No Arabic abstract
Event by event fluctuations of particle multiplicities and their ratios are considered to be sensitive probes to the exotic phenomena in high energy heavy ion collisions like phase transtion or the occurence of critical point. These phenomena might take place at different time after the collision based on fulfilling the required conditions at a particular time. Fluctuations are therefore expected to show non-monotonic behaviour at the of time of occurence of these phenomena. Experimentally, fluctuations are measured at freezeout. In this work, using the hybrid version of the UrQMD event generator, we have investigated the propagation of fluctuations of particle multiplicities, their ratios and the ratio of total positive and negative charges in AuAu collisions at E_{lab} < 90 AGeV. Two commonly used experimental measures i.e., {sigma^2}/mean and { u_{dyn}} have been used in the analysis in a given acceptance. The hybrid model, i.e., UrQMD with hydrodynamic evolution has been used to study the effect of hydrodynamic evolution on these conventional fluctuation measures. It is observed that the fluctuations as measured by {sigma^2}/mean and { u_{dyn}} gets reduced considerably at freezeout. The dominat structures present at the initial stage of the evolution get smoothen out. However, the energy dependence of the fluctuations remain preserved till the freezeout. The hydrodynamic evolution of the model with chiral equation of state shows considerably higher fluctuation at lower collision energy as compared to pure hadronic transport version or the hybrid version with hadronic equation of state. The time evolution of the higher order moments of net-proton distributios for particles in a specified coverage showed similar behaviour.
In the PHOBOS experiment, charged particles are measured in almost the full solid angle. This enables the study of fluctuations and correlations in the particle production over a very wide kinematic range. In this paper, we show results of a direct search for fluctuations identified by an unusual shape of the pseudorapidity distribution. In addition, we use analysis of correlations of the multiplicity in similar pseudorapidity bins, placed symmetrically in the forward and backward hemispheres, to test the hypothesis of production of particles in clusters.
The effect of fluctuations of SCF on the baryon production in d+Au and Au+Au collisions at 200A GeV is studied in the framework of HIJING/BB v2.0 model. An increase of the string tension from kappa_0= 1 GeV/fm, to in medium mean values of 1.5 to 2.0 GeV/fm and 2.0 to 3.0 GeV/fm, for d+Au and Au+Au respectively, results in a consistent description of the observed nuclear modification factors R_dAu and R_AuAu(that relates (d)Au+Au and p+p colllisions) and point to the relevance of fluctuations of transient color fields. The differences between nuclear modification factors R_AuAu and R_CP (that relates central and peripheral collisions) are also discussed. The measurement of multi-strange (anti)hyperons (Xi, Omega) yields would provide a crucial test of the importance of SCF fluctuations at RHIC energies.
Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2{2}$ and $v_2{4}$, for charged hadrons from U+U collisions at $sqrt{s_{rm NN}}$ = 193 GeV and Au+Au collisions at $sqrt{s_{rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2{2}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2{2}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.
With a Yang-Mills field, stratified shear flow initial state and a high resolution (3+1)D Particle-in-Cell Relativistic (PICR) hydrodynamic model, we calculate the $Lambda$ polarization for peripheral Au+Au collisions at RHIC energy of $sqrt{S_{NN}}=200$ GeV. The obtained longitudinal polarization in our model agrees with the experimental signature and the quadrupole structure on transverse momentum plane. It is found that the relativistic correction (2nd term), arising from expansion and from the time component of the thermal vorticity, plays a crucial role in our results. This term is changing the signature and exceeds the first term, arising from the classical vorticity. Finally, the global polarization in our model shows no significant dependence on rapidity, which agrees with the experimental data. It is also found that the second term flattens the sharp peak arising from the classical vorticity (1st term).
Collisions of deformed uranium nuclei are studied in a Monte-Carlo Glauber model. For U+U at zero impact parameter (b=0) in the most favorable orientation (tip-to-tip), the transverse particle density (charged-particle rapidity density per weighted transverse area of the initial participant zone) increases by about 35% compared to Au+Au at b=0. To estimate the advantage of U+U over Au+Au in the context of real experiments at the Relativistic Heavy Ion Collider, we examine the effect of a range of centrality cuts on the event sample. In terms of the transverse particle density, the predicted advantage of U+U is about 16%.