No Arabic abstract
The results of a theoretical investigation of an ultracold, neutral plasma composed of equal mass positive and negative charges are reported. In our simulations, the plasma is created by the fast dissociation of a neutral particle. The temperature of the plasma is controlled by the relative energy of the dissociation. We studied the early time evolution of this system where the initial energy was tuned so that the plasma is formed in the strongly coupled regime. In particular, we present results on the temperature evolution and three body recombination. In the weakly coupled regime, we studied how an expanding plasma thermalizes and how the scattering between ions affects the expansion. Because the expansion causes the density to drop, the velocity distribution only evolves for a finite time with the final distribution depending on the number of particles and initial temperature of the plasma.
We demonstrate magnetic confinement of an ultracold neutral plasma (UCNP) created at the null of a biconic cusp, or quadrupole magnetic field. Initially, the UCNP expands due to electron thermal pressure. As the plasma encounters stronger fields, expansion slows and the density distribution molds to the field. UCNP electrons are strongly magnetized over most of the plasma, while ion magnetization is only significant at the boundaries. Observations suggest that electrons and ions are predominantly trapped by magnetic mirroring and ambipolar electric fields respectively. Confinement times approach 0.5 ms, while unmagnetized plasmas dissipate on a timescale of a few tens of microseconds.
We photoionize laser-cooled atoms with a laser beam possessing spatially periodic intensity modulations to create ultracold neutral plasmas with controlled density perturbations. Laser-induced fluorescence imaging reveals that the density perturbations oscillate in space and time, and the dispersion relation of the oscillations matches that of ion acoustic waves, which are long-wavelength, electrostatic, density waves.
We investigate the strongly correlated ion dynamics and the degree of coupling achievable in the evolution of freely expanding ultracold neutral plasmas. We demonstrate that the ionic Coulomb coupling parameter $Gamma_{rm i}$ increases considerably in later stages of the expansion, reaching the strongly coupled regime despite the well-known initial drop of $Gamma_{rm i}$ to order unity due to disorder-induced heating. Furthermore, we formulate a suitable measure of correlation and show th at $Gamma_{rm i}$ calculated from the ionic temperature and density reflects the degree of order in the system if it is sufficiently close to a quasisteady state. At later times, however, the expansion of the plasma cloud becomes faster than the relaxation of correlations, and the system does not reach thermodynamic equilibrium anymore.
We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolution of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells.
While ion heating by elastic electron-ion collisions may be neglected for a description of the evolution of freely expanding ultracold neutral plasmas, the situation is different in scenarios where the ions are laser-cooled during the system evolution. We show that electron-ion collisions in laser-cooled plasmas influence the ionic temperature, decreasing the degree of correlation obtainable in such systems. However, taking into account the collisions increases the ion temperature much less than what would be estimated based on static plasma clouds neglecting the plasma expansion. The latter leads to both adiabatic cooling of the ions as well as, more importantly, a rapid decrease of the collisional heating rate.