Do you want to publish a course? Click here

Detachment of semiflexible polymer chains from a substrate - a Molecular Dynamics investigation

211   0   0.0 ( 0 )
 Added by Jaroslaw Paturej
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using Molecular Dynamics simulations, we study the force-induced detachment of a coarse-grained model polymer chain from an adhesive substrate. One of the chain ends is thereby pulled at constant speed off the attractive substrate and the resulting saw-tooth profile of the measured mean force $< f >$ vs height $D$ of the end-segment over the plane is analyzed for a broad variety of parameters. It is shown that the observed characteristic oscillations in the $< f >$-$D$ profile depend on the bending and not on the torsional stiffness of the detached chains. Allowing for the presence of hydrodynamic interactions (HI) in a setup with explicit solvent and DPD-thermostat, rather than the case of Langevin thermostat, one finds that HI have little effect on the $< f >$-$D$ profile. Also the change of substrate affinity with respect to the solvent from solvophilic to solvophobic is found to play negligible role in the desorption process. In contrast, a changing ratio $epsilon_s^A / epsilon_s^B$ of the binding energies of $A$- and $B$-segments in the detachment of an $AB$-copolymer from adhesive surface strongly changes the $< f >$-$D$ profile whereby the $B$-spikes vanish when $epsilon_s^A / epsilon_s^B < 0.15$. Eventually, performing an atomistic simulation of a (bio)-polymer {it polyglycine}, we demonstrate that the simulation results, derived from our coarse-grained model, comply favorably with those from the all-atom simulation.



rate research

Read More

We study the dynamical properties of semiflexible polymers with a recently introduced bead-spring model. We focus on double-stranded DNA. The two parameters of the model, $T^*$ and $ u$, are chosen to match its experimental force-extension curve. The bead-spring Hamiltonian is approximated in the first order by the Hessian that is quadratic in the bead positions. The eigenmodels of the Hessian provide the longitudinal (stretching) and transverse (bending) eigenmodes of the polymer, and the corresponding eigenvalues match well with the established phenomenology of semiflexible polymers. Using the longitudinal and transverse eigenmodes, we obtain analytical expressions of (i) the autocorrelation function of the end-to-end vector, (ii) the autocorrelation function of a bond (i.e., a spring, or a tangent) vector at the middle of the chain, and (iii) the mean-square displacement of a tagged bead in the middle of the chain, as sum over the contributions from the modes. We also perform simulations with the full dynamics of the model. The simulations yield numerical values of the correlation functions (i-iii) that agree very well with the analytical expressions for the linearized dynamics. We also study the mean-square displacement of the longitudinal component of the end-to-end vector that showcases strong nonlinear effects in the polymer dynamics, and we identify at least an effective $t^{7/8}$ power-law regime in its time-dependence. Nevertheless, in comparison to the full mean-square displacement of the end-to-end vector the nonlinear effects remain small at all times --- it is in this sense we state that our results demonstrate that the linearized dynamics suffices for dsDNA fragments that are shorter than or comparable to the persistence length. Our results are consistent with those of the wormlike chain (WLC) model, the commonly used descriptive tool of semiflexible polymers.
Semiflexible polymers in concentrated lyotropic solution are studied within a bead-spring model by molecular dynamics simulations, focusing on the emergence of a smectic A phase and its properties. We systematically vary the density of the monomeric units for several contour lengths that are taken smaller than the chain persistence length. The difficulties concerning the equilibration of such systems and the choice of appropriate ensemble (constant volume versus constant pressure, where all three linear dimensions of the simulation box can fluctuate independently) are carefully discussed. Using HOOMD-blue on graphics processing units, systems containing more than a million monomeric units are accessible, making it possible to distinguish the order of the phase transitions that occur. While in this model the nematic-smectic transition is continuous, the transition from the smectic phase to a related crystalline structure with true three-dimensional long-range order is clearly of first order. Further, both orientational and positional correlations of monomeric units are studied as well as the order parameters characterizing the nematic, smectic A, and crystalline phases. The analogy between smectic order and one-dimensional harmonic crystals with respect to the behavior of the structure factor is also explored. Finally, the results are put in perspective with pertinent theoretical predictions and possible experiments.
213 - A. Fiasconaro , J.J. Mazo , 2017
In this work we study the assisted translocation of a polymer across a membrane nanopore, inside which a molecular motor exerts a force fuelled by the hydrolysis of ATP molecules. In our model the motor switches to its active state for a fixed amount of time, while it waits for an ATP molecule binding and triggering the impulse, during an exponentially distributed time lapse. The polymer is modelled as a beads-springs chain with both excluded volume and bending contributions, and moves in a stochastic three dimensional environment modelled with a Langevin dynamics at fixed temperature. The resulting dynamics shows a Michaelis-Menten translocation velocity that depends on the chain flexibility. The scaling behavior of the mean translocation time with the polymer length for different bending values is also investigated.
64 - D. Thirumalai , B.-Y. Ha 1997
We describe a simple meanfield variational approach to study a number of properties of intrinsically stiff chains which are appropriate models for a large class of biopolymers. We present the calculation of the distribution of end-to-end distance and the elastic response of stiff chains under tension using this approach. In the former example we find that the simple expression almost quantitatively fits the results of computer simulation. For the case of the stiff chain under tension we recover analytically all the known limits. We obtain quantitative agreement with recent experiments on the stretching of DNA. The limitations of our approach are also discussed.
Molecular Dynamics simulations of a coarse-grained bead-spring model of flexible macromolecules tethered with one end to the surface of a cylindrical pore are presented. Chain length $N$ and grafting density $sigma$ are varied over a wide range and the crossover from ``mushroom to ``brush behavior is studied for three pore diameters. The monomer density profile and the distribution of the free chain ends are computed and compared to the corresponding model of polymer brushes at flat substrates. It is found that there exists a regime of $N$ and $sigma$ for large enough pore diameter where the brush height in the pore exceeds the brush height on the flat substrate, while for large enough $N$ and $sigma$ (and small enough pore diameters) the opposite behavior occurs, i.e. the brush is compressed by confinement. These findings are used to discuss the corresponding theories on polymer brushes at concave substrates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا