No Arabic abstract
For ultrashort VUV pulses with a pulse length comparable to the orbital time of the bound electrons they couple to we propose a simplified envelope Hamiltonian. It is based on the Kramers-Henneberger representation in connection with a Floquet expansion of the strong-field dynamics but keeps the time dependence of the pulse envelope explicit. Thereby, the envelope Hamiltonian captures the essence of the physics, -- light-induced shifts of bound states, single-photon absorption, and non-adiabatic electronic transitions. It delivers quantitatively accurate ionization dynamics and allows for physical insight into the processes occurring. Its minimal requirements for construction in terms of laser parameters make it ideally suited for a large class of atomic and molecular problems.
We report on experimental results in a new regime of a relativistic light-matter interaction employing mid-infrared (3.9-micrometer wavelength) high-intensity femtosecond laser pulses. In the laser generated plasma, the electrons reach relativistic energies already at rather low intensities due to the fortunate lambda^2-scaling of the kinetic energy with the laser wavelength. The lower intensity suppresses optical field ionization and creation of the pre-plasma at the rising edge of the laser pulse efficiently, enabling an enhanced efficient vacuum heating of the plasma. The lower critical plasma density for long-wavelength radiation can be surmounted by using nanowires instead of flat targets. In our experiments about 80% of the incident laser energy has been absorbed resulting in a long living, keV-temperature, high-charge state plasma with a density of more than three orders of magnitude above the critical value. Our results pave the way to laser-driven experiments on laboratory astrophysics and nuclear physics at a high repetition rate.
The interaction of 32.5 and 6 nm ultrashort X-ray pulses with the solid materials B4C, SiC and Si is simulated with a non-local thermodynamic equilibrium (NLTE) radiation transfer code. We study the ionization dynamics as function of depth in the material, modifications of the opacity during irradiation and estimate crater depth. Furthermore, we compare the estimated crater depth with experimental data, for fluences up to 2.2 J/cm2. Our results show that at 32.5 nm irradiation, the opacity changes with less than a factor of 2 for B4C and Si and a factor of 3 for SiC, for fluences up to 200 J/cm2. At a laser wavelength of 6 nm, the model predicts a dramatic decrease in opacity due to the weak inverse bremsstrahlung, increasing the crater depth for high fluences.
Phase-shift differences and amplitude ratios of the outgoing $s$ and $d$ continuum wave packets generated by two-photon ionization of helium atoms are determined from the photoelectron angular distributions obtained using velocity map imaging. Helium atoms are ionized with ultrashort extreme-ultraviolet free-electron laser pulses with a photon energy of 20.3, 21.3, 23.0, and 24.3 eV, produced by the SPring-8 Compact SASE Source test accelerator. The measured values of the phase-shift differences are distinct from scattering phase-shift differences when the photon energy is tuned to an excited level or Rydberg manifold. The difference stems from the competition between resonant and non-resonant paths in two-photon ionization by ultrashort pulses. Since the competition can be controlled in principle by the pulse shape, the present results illustrate a new way to tailor the continuum wave packet.
We investigate theoretically electron dynamics under a VUV attosecond pulse train which has a controlled phase delay with respect to an additional strong infrared laser field. Using the strong field approximation and the fact that the attosecond pulse is short compared to the excited electron dynamics, we arrive at a minimal analytical model for the kinetic energy distribution of the electron as well as the photon absorption probability as a function of the phase delay between the fields. We analyze the dynamics in terms of electron wave packet replicas created by the attosecond pulses. The absorption probability shows strong modulations as a function of the phase delay for VUV photons of energy comparable to the binding energy of the electron, while for higher photon energies the absorption probability does not depend on the delay, in line with the experimental observations for helium and argon, respectively.
We study the influence of the pulse duration on high harmonic generation (HHG) with exploring a wide laser-parameter region theoretically. Previous studies have showed that for high laser intensities near to the saturation ionization intensity, the HHG inversion efficiency is higher for shorter pulses since the ground-state depletion is weaker in the latter. Surprisingly, our simulations show this high efficiency also appears even for a moderate laser intensity at which the ionization is not strong. A classical effect relating to shorter travel distances of the rescattering electron in shorter pulses, is found to contribute importantly to this high efficiency. The effect can be amplified significantly as a two-color laser field is used, suggesting an effective approach for increasing the HHG yield.