No Arabic abstract
Direct detection dark matter experiments looking for WIMP-nucleus elastic scattering will soon be sensitive to an irreducible background from neutrinos which will drastically affect their discovery potential. Here we explore how the neutrino background will affect future ton-scale experiments considering both spin-dependent and spin-independent interactions. We show that combining data from experiments using different targets can improve the dark matter discovery potential due to target complementarity. We find that in the context of spin-dependent interactions, combining results from several targets can greatly enhance the subtraction of the neutrino background for WIMP masses below 10 GeV/c$^2$ and therefore probe dark matter models to lower cross-sections. In the context of target complementarity, we also explore how one can tune the relative exposures of different target materials to optimize the WIMP discovery potential.
The possibility of direct detection of light fermionic dark matter in neutrino detectors is explored from a model-independent standpoint. We consider all operators of dimension six or lower which can contribute to the interaction $bar{f} p to e^+ n$, where $f$ is a dark Majorana or Dirac fermion. Constraints on these operators are then obtained from the $f$ lifetime and its decays which produce visible $gamma$ rays or electrons. We find one operator which would allow $bar{f} p to e^+ n$ at interesting rates in neutrino detectors, as long as $m_f lesssim m_{pi}$. The existing constraints on light dark matter from relic density arguments, supernova cooling rates, and big-bang nucleosynthesis are then reviewed. We calculate the cross-section for $bar{f} p to e^+ n$ in neutrino detectors implied by this operator, and find that Super-K can probe the new physics scale $Lambda$ for this interaction up to ${cal O}(100 {TeV})$
We study a simple extension of the Standard Model supplemented by an electroweak triplet scalar field to accommodate small neutrino masses by the type-II seesaw mechanism, while an additional singlet scalar field can play the role of cold dark matter (DM) in our Universe. This DM candidate is leptophilic for a wide range of model parameter space, and the lepton flux due to its annihilation carries information about the neutrino mass hierarchy. Using the recently released high precision data on positron fraction and flux from the AMS-02 experiment, we examine the DM interpretation of the observed positron excess in our model for two kinematically distinct scenarios with the DM and triplet scalar masses (a) non-degenerate ($m_{rm DM}gg m_{Delta}$), and (b) quasi-degenerate ($m_{rm DM} simeq m_Delta$). We find that a good fit to the AMS-02 data can be obtained in both cases (a) and (b) with a normal hierarchy of neutrino masses, while the inverted hierarchy case is somewhat disfavored. Although we require a larger boost factor for the normal hierarchy case, this is still consistent with the current upper limits derived from Fermi-LAT and IceCube data for case (a). Moreover, the absence of an excess anti-proton flux as suggested by PAMELA data sets an indirect upper limit on the DM-nucleon spin-independent elastic scattering cross section which is stronger than the existing DM direct detection bound from LUX in the AMS-02 preferred DM mass range.
Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a Bremsstrahlung photon. In this letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c$^2$ by looking for electronic recoils induced by the Migdal effect and Bremsstrahlung, using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.
We study a three stage dark matter and neutrino observatory based on multi-ton two-phase liquid Xe and Ar detectors with sufficiently low backgrounds to be sensitive to WIMP dark matter interaction cross sections down to 10E-47 cm^2, and to provide both identification and two independent measurements of the WIMP mass through the use of the two target elements in a 5:1 mass ratio, giving an expected similarity of event numbers. The same detection systems will also allow measurement of the pp solar neutrino spectrum, the neutrino flux and temperature from a Galactic supernova, and neutrinoless double beta decay of 136Xe to the lifetime level of 10E27 - 10E28 y corresponding to the Majorana mass predicted from current neutrino oscillation data. The proposed scheme would be operated in three stages G2, G3, G4, beginning with fiducial masses 1-ton Xe + 5-ton Ar (G2), progressing to 10-ton Xe + 50-ton Ar (G3) then, dependent on results and performance of the latter, expandable to 100-ton Xe + 500-ton Ar (G4). This method of scale-up offers the advantage of utilizing the Ar vessel and ancillary systems of one stage for the Xe detector of the succeeding stage, requiring only one new detector vessel at each stage. Simulations show the feasibility of reducing or rejecting all external and internal background levels to a level <1 events per year for each succeeding mass level, by utilizing an increasing outer thickness of target material as self-shielding. The system would, with increasing mass scale, become increasingly sensitive to annual signal modulation, the agreement of Xe and Ar results confirming the Galactic origin of the signal. Dark matter sensitivities for spin-dependent and inelastic interactions are also included, and we conclude with a discussion of possible further gains from the use of Xe/Ar mixtures.
Coherent elastic neutrino- and WIMP-nucleus interaction signatures are expected to be quite similar. This paper discusses how a next generation ton-scale dark matter detector could discover neutrino-nucleus coherent scattering, a precisely-predicted Standard Model process. A high intensity pion- and muon- decay-at-rest neutrino source recently proposed for oscillation physics at underground laboratories would provide the neutrinos for these measurements. In this paper, we calculate raw rates for various target materials commonly used in dark matter detectors and show that discovery of this interaction is possible with a 2 ton$cdot$year GEODM exposure in an optimistic energy threshold and efficiency scenario. We also study the effects of the neutrino source on WIMP sensitivity and discuss the modulated neutrino signal as a sensitivity/consistency check between different dark matter experiments at DUSEL. Furthermore, we consider the possibility of coherent neutrino physics with a GEODM module placed within tens of meters of the neutrino source.