No Arabic abstract
We study a three stage dark matter and neutrino observatory based on multi-ton two-phase liquid Xe and Ar detectors with sufficiently low backgrounds to be sensitive to WIMP dark matter interaction cross sections down to 10E-47 cm^2, and to provide both identification and two independent measurements of the WIMP mass through the use of the two target elements in a 5:1 mass ratio, giving an expected similarity of event numbers. The same detection systems will also allow measurement of the pp solar neutrino spectrum, the neutrino flux and temperature from a Galactic supernova, and neutrinoless double beta decay of 136Xe to the lifetime level of 10E27 - 10E28 y corresponding to the Majorana mass predicted from current neutrino oscillation data. The proposed scheme would be operated in three stages G2, G3, G4, beginning with fiducial masses 1-ton Xe + 5-ton Ar (G2), progressing to 10-ton Xe + 50-ton Ar (G3) then, dependent on results and performance of the latter, expandable to 100-ton Xe + 500-ton Ar (G4). This method of scale-up offers the advantage of utilizing the Ar vessel and ancillary systems of one stage for the Xe detector of the succeeding stage, requiring only one new detector vessel at each stage. Simulations show the feasibility of reducing or rejecting all external and internal background levels to a level <1 events per year for each succeeding mass level, by utilizing an increasing outer thickness of target material as self-shielding. The system would, with increasing mass scale, become increasingly sensitive to annual signal modulation, the agreement of Xe and Ar results confirming the Galactic origin of the signal. Dark matter sensitivities for spin-dependent and inelastic interactions are also included, and we conclude with a discussion of possible further gains from the use of Xe/Ar mixtures.
We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2-30 keV, where the sensitivity to solar pp and $^7$Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below $sim$2$times$10$^{-48}$ cm$^2$ and WIMP masses around 50 GeV$cdot$c$^{-2}$, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below $sim$6 GeV$cdot$c$^{-2}$ to cross sections above $sim$4$times$10$^{-45}$cm$^2$. DARWIN could reach a competitive half-life sensitivity of 5.6$times$10$^{26}$ y to the neutrinoless double beta decay of $^{136}$Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.
The DEAP-1 SI{7}{kg} single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the mbox{DEAP-3600} Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The $^{222}$Rn decay rate in the liquid argon was measured to be between 16 and SI{26}{microbecquerelperkilogram}. We found that the background spectrum near the region of interest for Dark Matter detection in the DEAP-1 detector can be described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse shape discrimination, and leakage of events from outside the fiducial volume due to imperfect position reconstruction. These backgrounds statistically account for all observed events, and they will be strongly reduced in the DEAP-3600 detector due to its higher light yield and simpler geometry.
Detectors based upon the noble elements, especially liquid xenon as well as liquid argon, as both single- and dual-phase types, require reconstruction of the energies of interacting particles, both in the field of direct detection of dark matter (Weakly Interacting Massive Particles or WIMPs, axions, etc.) and in neutrino physics. Experimentalists, as well as theorists who reanalyze/reinterpret experimental data, have used a few different techniques over the past few decades. In this paper, we review techniques based on solely the primary scintillation channel, the ionization or secondary channel available at non-zero drift electric fields, and combined techniques that include a simple linear combination and weighted averages, with a brief discussion of the applications of profile likelihood, maximum likelihood, and machine learning. Comparing results for electron recoils (beta and gamma interactions) and nuclear recoils (primarily from neutrons) from the Noble Element Simulation Technique (NEST) simulation to available data, we confirm that combining all available information generates higher-precision means, lower widths (energy resolution), and more symmetric shapes (approximately Gaussian) especially at keV-scale energies, with the symmetry even greater when thresholding is addressed. Near thresholds, bias from upward fluctuations matters. For MeV-GeV scales, if only one channel is utilized, an ionization-only-based energy scale outperforms scintillation; channel combination remains beneficial. We discuss here what major collaborations use.
We examine the sensitivity of a large scale two-phase liquid argon detector to the directionality of the dark matter signal. This study was performed under the assumption that, above 50 keV of recoil energy, one can determine (with some resolution) the direction of the recoil nucleus without head-tail discrimination, as suggested by past studies that proposed to exploit the dependence of columnar recombination on the angle between the recoil nucleus direction and the electric field. In this paper we study the differential interaction recoil rate as a function of the recoil direction angle with respect to the zenith for a detector located at the Laboratori Nazionali del Gran Sasso and we determine its diurnal and seasonal modulation. Using a likelihood-ratio based approach we show that, with the angular information alone, 100 events are enough to reject the isotropic hypothesis at three standard deviation level. For an exposure of 100 tonne years this would correspond to a spin independent WIMP-nucleon cross section of about 10^-46 cm^2 at 200 GeV WIMP mass. The results presented in this paper provide strong motivation for the experimental determination of directional recoil effects in two-phase liquid argon detectors.
We propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a next-generation neutrino observatory on the scale of 50 kt. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. LENAs physics objectives comprise the observation of astrophysical and terrestrial neutrino sources as well as the investigation of neutrino oscillations. In the GeV energy range, the search for proton decay and long-baseline neutrino oscillation experiments complement the low-energy program. Based on the considerable expertise present in European and international research groups, the technical design is sufficiently mature to allow for an early start of detector realization.