Do you want to publish a course? Click here

The radio/X-ray domain of black hole X-ray binaries at the lowest radio luminosities

156   0   0.0 ( 0 )
 Added by Elena Gallo
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] We report on deep, coordinated radio and X-ray observations of the black hole X-ray binary XTE J1118+480 in quiescence. The source was observed with the Karl G. Jansky Very Large Array for a total of 17.5 hrs at 5.3 GHz, yielding a 4.8 pm 1.4 microJy radio source at a position consistent with the binary system. At a distance of 1.7 kpc, this corresponds to an integrated radio luminosity between 4-8E+25 erg/s, depending on the spectral index. This is the lowest radio luminosity measured for any accreting black hole to date. Simultaneous observations with the Chandra X-ray Telescope detected XTE J1118+480 at 1.2E-14 erg/s/cm^2 (1-10 keV), corresponding to an Eddington ratio of ~4E-9 for a 7.5 solar mass black hole. Combining these new measurements with data from the 2005 and 2000 outbursts available in the literature, we find evidence for a relationship of the form ellr=alpha+beta*ellx (where ell denotes logarithmic luminosities), with beta=0.72pm0.09. XTE J1118+480 is thus the third system, together with GX339-4 and V404 Cyg, for which a tight, non-linear radio/X-ray correlation has been reported over more than 5 dex in ellx. We then perform a clustering and linear regression analysis on what is arguably the most up-to-date collection of coordinated radio and X-ray luminosity measurements from quiescent and hard state black hole X-ray binaries, including 24 systems. At variance with previous results, a two-cluster description is statistically preferred only for random errors <=0.3 dex in both ellr and ellx, a level which we argue can be easily reached when the known spectral shape/distance uncertainties and intrinsic variability are accounted for. A linear regression analysis performed on the whole data set returns a best-fitting slope beta=0.61pm0.03 and intrinsic scatter sigma_0=0.31pm 0.03 dex.



rate research

Read More

[abridged] The radio:X-ray correlation for hard and quiescent state black hole X-ray binaries is critically investigated in this paper. New observations of known sources, along with newly discovered ones, have resulted in an increasingly large number of outliers lying well outside the scatter about the quoted best-fit relation. Here, we employ and compare state of the art data clustering techniques in order to identify and characterize different data groupings within the radio:X-ray luminosity plane for 18 hard and quiescent state black hole X-ray binaries with nearly simultaneous multi-wavelength coverage. Linear regression is then carried out on the clustered data to infer the parameters of a relationship of the form {ell}_{r}=alpha+beta {ell}_x through a Bayesian approach (where {ell} denotes log lum). We conclude that the two cluster model, with independent linear fits, is a significant improvement over fitting all points as a single cluster. While the upper track slope (0.63pm0.03) is consistent, within the errors, with the fitted slope for the 2003 relation (0.7pm0.1), the lower track slope (0.98pm0.08) is not consistent with the upper track, nor it is with the widely adopted value of ~1.4 for the neutron stars. The two luminosity tracks do not reflect systematic differences in black hole spins as estimated either from reflection, or continuum fitting method. These results are insensitive to the selection of sub-samples, accuracy in the distances, and to the treatment of upper limits. Besides introducing a further level of complexity in understanding the interplay between synchrotron and Comptonised emission from black hole X-ray binaries, the existence of two tracks in the radio:X-ray domain underscores that a high level of caution must be exercised when employing black hole luminosity relations for the purpose of estimating a third parameter, such as distance or mass.
Quiescent black hole X-ray binaries (X-ray luminosities <1e34 erg/s) are believed to be fed by hot accretion flows that launch compact, relativistic jets. However, due to their low luminosities, quiescent jets have been detected in the radio waveband from only five systems so far. Here, we present radio observations of two quiescent black hole X-ray binaries with the Australia Telescope Compact Array. One system, GS 1124-684, was not detected. The other system, BW Cir, was detected over two different epochs in 2018 and 2020, for which we also obtained quasi-simultaneous X-ray detections with Chandra and Swift. BW Cir is now the sixth quiescent X-ray binary with a confirmed radio jet. However, the distance to BW Cir is uncertain, and we find that BW Cir shows different behaviour in the radio/X-ray luminosity plane depending on the correct distance. Estimates based on its G-type subgiant donor star place BW Cir at >25 kpc, while initial optical astrometric measurements from Gaia Data Release 2 suggested likely distances of just a few kpc. Here, we use the most recent measurements from Gaia Early Data Release 3 and find a distance d=7.1(+4.8/-3.9) kpc and a potential kick velocity PKV=165(+81/-17) km/s, with distances up to ~20 kpc possible based on its parallax and proper motion. Even though there is now less tension between the parallax and donor-star based distance measurements, it remains an unresolved matter, and we conclude with suggestions on how to reconcile the two measurements.
INTEGRAL is an ESA mission in fundamental astrophysics that was launched in October 2002. It has been in orbit for over 18 years, during which it has been observing the high-energy sky with a set of instruments specifically designed to probe the emission from hard X-ray and soft gamma-ray sources. This paper is devoted to the subject of black hole binaries, which are among the most important sources that populate the high-energy sky. We present a review of the scientific literature based on INTEGRAL data, which has significantly advanced our knowledge in the field of relativistic astrophysics. We briefly summarise the state-of-the-art of the study of black hole binaries, with a particular focus on the topics closer to the INTEGRAL science. We then give an overview of the results obtained by INTEGRAL and by other observatories on a number of sources of importance in the field. Finally, we review the main results obtained over the past 18 years on all the black hole binaries that INTEGRAL has observed. We conclude with a summary of the main contributions of INTEGRAL to the field, and on the future perspectives.
We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broad-band (0.3--30 keV) quiescent luminosity of the source is 8.9$times$10$^{32}$ erg s$^{-1}$ for a distance of 2.4 kpc. The source shows clear variability on short time scales (an hour to a couple of hours) in radio, soft X-ray and hard X-ray bands in the form of multiple flares. The broad-band X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having photon index $Gamma$=2.12$pm$0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3$sigma$ confidence level with e-folding energy of the cutoff to be 20$^{+20}_{-7}$ keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast time-scales (as short as 10 min.), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in accretion rate. We explore different scenarios to explain this very fast variability.
Black hole low mass X-ray binaries in their hard spectral state are found to display two different correlations between the radio emission from the compact jets and the X-ray emission from the inner accretion flow. Here, we present a large data set of quasi-simultaneous radio and X-ray observations of the recently discovered accreting black hole MAXI J1348-630 during its 2019/2020 outburst. Our results span almost six orders of magnitude in X-ray luminosity, allowing us to probe the accretion-ejection coupling from the brightest to the faintest phases of the outburst. We find that MAXI J1348-630 belongs to the growing population of outliers at the highest observed luminosities. Interestingly, MAXI J1348-630 deviates from the outlier track at $L_{rm X} lesssim 7 times 10^{35} (D / 2.2 {rm kpc})^2$ erg s$^{-1}$ and ultimately rejoins the standard track at $L_{rm X} simeq 10^{33} (D / 2.2 {rm kpc})^2$ erg s$^{-1}$, displaying a hybrid radio/X-ray correlation, observed only in a handful of sources. However, for MAXI J1348-630 these transitions happen at luminosities much lower than what observed for similar sources (at least an order of magnitude). We discuss the behaviour of MAXI J1348-630 in light of the currently proposed scenarios and we highlight the importance of future deep monitorings of hybrid correlation sources, especially close to the transitions and in the low luminosity regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا