Do you want to publish a course? Click here

Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth

664   0   0.0 ( 0 )
 Added by Geoff Campbell Mr.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the delay of optical pulses using electromagnetically induced transparency in an ensemble of cold atoms with an optical depth exceeding 500. To identify the regimes in which four-wave mixing impacts on EIT behaviour, we conduct the experiment in both rubidium 85 and rubidium 87. Comparison with theory shows excellent agreement in both isotopes. In rubidium 87, negligible four-wave mixing was observed and we obtained one pulse-width of delay with 50% efficiency. In rubidium 85, four-wave-mixing contributes to the output. In this regime we achieve a delay-bandwidth product of 3.7 at 50% efficiency, allowing temporally multimode delay, which we demonstrate by compressing two pulses into the memory medium.



rate research

Read More

We study electromagnetically induced transparency (EIT) of a weakly interacting cold Rydberg gas. We show that the onset of interactions is manifest as a depopulation of the Rydberg state and numerically model this effect by adding a density-dependent non-linear term to the optical Bloch equations. In the limit of a weak probe where the depopulation effect is negligible, we observe no evidence of interaction induced decoherence and obtain a narrow Rydberg dark resonance with a linewidth of <600 kHz, limited by the Rabi frequency of the coupling beam
We have analyzed a five-level $wedge$-configuration Four-Wave Mixing (FWM) scheme for obtaining a high-efficiency FWM based on the two electromagnetically induced transparency. We find that the maximum FWM efficiency is nearly 30%, which is orders of magnitude larger than previous schemes based on the two electromagnetically induced transparency. Our scheme may provide a new possibility for technological applications such as nonlinear spectroscopy at very low light intensity, quantum single-photon nonlinear optics and quantum information science.
244 - G. W. Lin , Y. H. Qi , X. M. Lin 2013
We consider the dynamics of intracavity electromagnetically induced transparency (EIT) in an ensemble of strongly interacting Rydberg atoms. By combining the advantage of variable cavity lifetimes with intracavity EIT and strongly interacting Rydberg dark-state polaritons, we show that such intracavity EIT system could exhibit very strong photon blockade effect.
Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a $^{87}$Rb magneto-optical trap with a peak optical depth of 1000 for the D2 $F=2 rightarrow F=3$ transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of $80pm 2$% and coherence times up to 195 $mu$s, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.
We report the observation of Electromagnetically Induced Transparency (EIT) of a mechanical field, where a superconducting artificial atom is coupled to a 1D-transmission line for surface acoustic waves. An electromagnetic microwave drive is used as the control field, rendering the superconducting transmon qubit transparent to the acoustic probe beam. The strong frequency dependence of the acoustic coupling enables EIT in a ladder configuration due to the suppressed relaxation of the upper level. Our results show that superconducting circuits can be engineered to interact with acoustic fields in parameter regimes not readily accessible to purely electromagnetic systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا