Do you want to publish a course? Click here

Mapping spaces from projective spaces

486   0   0.0 ( 0 )
 Added by Mitsunobu Tsutaya
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We denote the $n$-th projective space of a topological monoid $G$ by $B_nG$ and the classifying space by $BG$. Let $G$ be a well-pointed topological monoid of the homotopy type of a CW complex and $G$ a well-pointed grouplike topological monoid. We prove the weak equivalence between the pointed mapping space $mathrm{Map}_0(B_nG,BG)$ and the space of all $A_n$-maps from $G$ to $G$. This fact has several applications. As the first application, we show that the connecting map $Grightarrowmathrm{Map}_0(B_nG,BG)$ of the evaluation fiber sequence $mathrm{Map}_0(B_nG,BG)rightarrowmathrm{Map}(B_nG,BG)rightarrow BG$ is delooped. As other applications, we consider higher homotopy commutativity, $A_n$-types of gauge groups, $T_k^f$-spaces by Iwase--Mimura--Oda--Yoon and homotopy pullback of $A_n$-maps. In particular, we show that the $T_k^f$-space and the $C_k^f$-space are exactly the same concept and give some new examples of $T_k^f$-spaces.



rate research

Read More

Homotopy type theory is a version of Martin-Lof type theory taking advantage of its homotopical models. In particular, we can use and construct objects of homotopy theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key players in homotopy theory, as certain higher inductive types in homotopy type theory. The classical definition of RP(n), as the quotient space identifying antipodal points of the n-sphere, does not translate directly to homotopy type theory. Instead, we define RP(n) by induction on n simultaneously with its tautological bundle of 2-element sets. As the base case, we take RP(-1) to be the empty type. In the inductive step, we take RP(n+1) to be the mapping cone of the projection map of the tautological bundle of RP(n), and we use its universal property and the univalence axiom to define the tautological bundle on RP(n+1). By showing that the total space of the tautological bundle of RP(n) is the n-sphere, we retrieve the classical description of RP(n+1) as RP(n) with an (n+1)-cell attached to it. The infinite dimensional real projective space, defined as the sequential colimit of the RP(n) with the canonical inclusion maps, is equivalent to the Eilenberg-MacLane space K(Z/2Z,1), which here arises as the subtype of the universe consisting of 2-element types. Indeed, the infinite dimensional projective space classifies the 0-sphere bundles, which one can think of as synthetic line bundles. These constructions in homotopy type theory further illustrate the utility of homotopy type theory, including the interplay of type theoretic and homotopy theoretic ideas.
We extend some classical results - such as Quillens Theorem A, the Grothendieck construction, Thomasons Theorem and the characterisation of homotopically cofinal functors - from the homotopy theory of small categories to polynomial monads and their algebras. As an application we give a categorical proof of the Dwyer-Hess and Turchin results concerning the explicit double delooping of spaces of long knots.
From a map of operads $eta : Orightarrow O$, we introduce a cofibrant replacement of the operad $O$ in the category of bimodules over itself such that the corresponding model of the derived mapping space of bimodules $Bimod_{O}^{h}(O;O)$ is an algebra over the one dimensional little cubes operad $mathcal{C}_{1}$. In the present work, we also build an explicit weak equivalence of $mathcal{C}_{1}$-algebras from the loop space $Omega Operad^{h}(O;O)$ to $Bimod_{O}^{h}(O;O)$.
W. Hurewicz proved that analytic Menger sets of reals are $sigma$-compact and that co-analytic completely Baire sets of reals are completely metrizable. It is natural to try to generalize these theorems to projective sets. This has previously been accomplished by $V = L$ for projective counterexamples, and the Axiom of Projective Determinacy for positive results. For the first problem, the first author, S. Todorcevic, and S. Tokgoz have produced a finer analysis with much weaker axioms. We produce a similar analysis for the second problem, showing the two problems are essentially equivalent. We also construct in ZFC a separable metrizable space with $omega$-th power completely Baire, yet lacking a dense completely metrizable subspace. This answers a question of Eagle and Tall in Abstract Model Theory.
The class of loop spaces whose mod p cohomology is Noetherian is much larger than the class of p-compact groups (for which the mod p cohomology is required to be finite). It contains Eilenberg-Mac Lane spaces such as the infinite complex projective space and 3-connected covers of compact Lie groups. We study the cohomology of the classifying space BX of such an object and prove it is as small as expected, that is, comparable to that of BCP^infty. We also show that BX differs basically from the classifying space of a p-compact group in a single homotopy group. This applies in particular to 4-connected covers of classifying spaces of Lie groups and sheds new light on how the cohomology of such an object looks like.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا