Do you want to publish a course? Click here

Measurements of Double-Polarized Compton Scattering Asymmetries and Extraction of the Proton Spin Polarizabilities

193   0   0.0 ( 0 )
 Added by Philippe Martel
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to measure the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the $Delta(1232)$ region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields $gamma_{E1E1} = -3.5 pm 1.2$, $gamma_{M1M1}= 3.16 pm 0.85$, $gamma_{E1M2} = -0.7 pm 1.2$, and $gamma_{M1E2} = 1.99 pm 0.29$, in units of $10^{-4}$ fm$^4$.



rate research

Read More

The Compton double-polarization observable $Sigma_{2z}$ has been measured for the first time in the $Delta(1232)$ resonance region using a circularly polarized photon beam incident on a longitudinally polarized target at the Mainz Microtron. This paper reports these results, together with the model-dependent extraction of four proton spin polarizabilities from fits to additional asymmetry data using dispersion relation and chiral perturbation theory calculations, with the former resulting in: $gamma_{E1E1} = -3.18 pm 0.52$, $gamma_{M1M1} = 2.98 pm 0.43$, $gamma_{E1M2} = -0.44 pm 0.67$ and $gamma_{M1E2} = 1.58 pm 0.43$, in units of $10^{-4}~mathrm{fm}^{4}$.
66 - V. Sulkosky , G. Jin , E. Long 2017
$[Background]$ Measurements of the neutron charge form factor, $G^n_E$, are challenging due to the fact that the neutron has no net charge. In addition, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting $G^n_E$ with different targets and techniques provides an important test of our handling of these effects. $[Purpose]$ The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of $1~(rm{GeV/c})^2$. This technique has very different systematic uncertainties than traditional exclusive measurements and thus serves as an independent check of whether nuclear effects have been taken into account correctly. $[Method]$ The inclusive quasi-elastic reaction $^3overrightarrow{rm{He}}(overrightarrow{e},e)$ was measured at Jefferson Lab. The neutron electric form factor, $G_E^n$, was extracted at $Q^2 = 0.98~(rm{GeV/c})^2$ from ratios of electron-polarization asymmetries measured for two orthogonal target spin orientations. This $Q^2$ is high enough that the sensitivity to $G_E^n$ is not overwhelmed by the neutron magnetic contribution, and yet low enough that explicit neutron detection is not required to suppress pion production. $[Results]$ The neutron electric form factor, $G_E^n$, was determined to be $0.0414pm0.0077;{(stat)}pm0.0022;{(syst)}$; providing the first high precision inclusive extraction of the neutrons charge form factor. $[Conclusions]$ The use of the inclusive quasi-elastic $^3overrightarrow{rm{He}}(overrightarrow{e},e)$ with a four-momentum transfer near $1~(rm{GeV/c})^2$ has been used to provide a unique measurement of $G^n_E$. This new result provides a systematically independent validation of the exclusive extraction technique results.
The electromagnetic polarizabilities of the nucleon are fundamental properties that describe its response to external electric and magnetic fields. They can be extracted from Compton-scattering data --- and have been, with good accuracy, in the case of the proton. In contradistinction, information for the neutron requires the use of Compton scattering from nuclear targets. Here we report a new measurement of elastic photon scattering from deuterium using quasimonoenergetic tagged photons at the MAX IV Laboratory in Lund, Sweden. These first new data in more than a decade effectively double the world dataset. Their energy range overlaps with previous experiments and extends it by 20 MeV to higher energies. An analysis using Chiral Effective Field Theory with dynamical Delta(1232) degrees of freedom shows the data are consistent with and within the world dataset. After demonstrating that the fit is consistent with the Baldin sum rule, extracting values for the isoscalar nucleon polarizabilities and combining them with a recent result for the proton, we obtain the neutron polarizabilities as alpha_n = [11.55 +/- 1.25(stat) +/- 0.2(BSR) +/- 0.8(th)] X 10^{-4} fm^3 and beta_n = [3.65 -/+ 1.25(stat) +/- 0.2(BSR) -/+ 0.8(th)] X 10^{-4} fm3, with chi^2 = 45.2 for 44 degrees of freedom.
Differential cross sections for quasi-free Compton scattering from the proton and neutron bound in the deuteron have been measured using the Glasgow/Mainz tagging spectrometer at the Mainz MAMI accelerator together with the Mainz 48 cm $oslash$ $times$ 64 cm NaI(Tl) photon detector and the Gottingen SENECA recoil detector. The data cover photon energies ranging from 200 MeV to 400 MeV at $theta^{LAB}_gamma=136.2^circ$. Liquid deuterium and hydrogen targets allowed direct comparison of free and quasi-free scattering from the proton. The neutron detection efficiency of the SENECA detector was measured via the reaction $p(gamma,pi^+ n)$. The free proton Compton scattering cross sections extracted from the bound proton data are in reasonable agreement with those for the free proton which gives confidence in the method to extract the differential cross section for free scattering from quasi-free data. Differential cross sections on the free neutron have been extracted and the difference of the electromagnetic polarizabilities of the neutron have been obtained to be $alpha-beta= 9.8pm 3.6(stat){}^{2.1}_1.1(syst)pm 2.2(model)$ in units $10^{-4}fm^3$. In combination with the polarizability sum $alpha +beta=15.2pm 0.5$ deduced from photoabsorption data, the neutron electric and magnetic polarizabilities, $alpha_n=12.5pm 1.8(stat){}^{+1.1}_{-0.6}pm 1.1(model)$ and $beta_n=2.7mp 1.8(stat){}^{+0.6}_{-1.1}(syst)mp 1.1(model)$ are obtained. The backward spin polarizability of the neutron was determined to be $gamma^{(n)}_pi=(58.6pm 4.0)times 10^{-4}fm^4$.
72 - B. Pasquini 2017
We present the first attempt to extract the scalar dipole dynamical polarizabilities from proton real Compton scattering data below pion-production threshold. The theoretical framework combines dispersion relations technique, low-energy expansion and multipole decomposition of the scattering amplitudes. The results are obtained with statistical tools that have never been applied so far to Compton scattering data and are crucial to overcome problems inherent to the analysis of the available data set.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا