Do you want to publish a course? Click here

Ultra-high brilliance multi-MeV $gamma$-ray beam from non-linear Thomson scattering

181   0   0.0 ( 0 )
 Added by Gianluca Sarri
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the generation of a narrow divergence ($thetaapprox 2.5$ mrad), multi-MeV ($E_text{MAX} = 18$ MeV) and ultra-high brilliance ($approx 2times10^{19}$ photons s$^{-1}$ mm$^{-2}$ mrad $^{-2}$ 0.1% BW) $gamma$-ray beam from the scattering of an ultra-relativistic laser-wakefield accelerated electron beam in the field of a relativistically intense laser (dimensionless amplitude $a_0approx2$). The spectrum of the generated $gamma$-ray beam is measured, with MeV resolution, seamlessly from 6 MeV to 18 MeV, giving clear evidence of the onset of non-linear Thomson scattering. The photon source has the highest brilliance in the multi-MeV regime ever reported in the literature.



rate research

Read More

Recent progress in laser-driven plasma acceleration now enables the acceleration of electrons to several gigaelectronvolts. Taking advantage of these novel accelerators, ultra-short, compact and spatially coherent X-ray sources called betatron radiation have been developed and applied to high-resolution imaging. However, the scope of the betatron sources is limited by a low energy efficiency and a photon energy in the 10s of kiloelectronvolt range, which for example prohibits the use of these sources for probing dense matter. Here, based on three-dimensional particle-in-cell simulations, we propose an original hybrid scheme that combines a low-density laser-driven plasma accelerator with a high-density beam-driven plasma radiator, and thereby considerably increases the photon energy and the radiated energy of the betatron source. The energy efficiency is also greatly improved, with about 1% of the laser energy transferred to the radiation, and the gamma-ray photon energy exceeds the megaelectronvolt range when using a 15 J laser pulse. This high-brilliance hybrid betatron source opens the way to a wide range of applications requiring MeV photons, such as the production of medical isotopes with photo-nuclear reactions, radiography of dense objects in the defense or industrial domains and imaging in nuclear physics.
An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here we consider Gaussian Schell-model beams and thin optical elements. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherence, is also analyzed in detail. As an example the coherence properties in the focal region of compound refractive lenses at the PETRA III synchrotron source are analyzed.
124 - T. Heinzl , D. Seipt , B. Kampfer 2009
We discuss intensity effects in collisions between beams of optical photons from a high-power laser and relativistic electrons. Our main focus are the modifications of the emission spectra due to realistic finite-beam geometries. By carefully analyzing the classical limit we precisely quantify the distinction between strong-field QED Compton scattering and classical Thomson scattering. A purely classical, but fully covariant, calculation of the bremsstrahlung emitted by an electron in a plane wave laser field yields radiation into harmonics, as expected. This result is generalized to pulses of finite duration and explains the appearance of line broadening and harmonic substructure as an interference phenomenon. The ensuing numerical treatment confirms that strong focussing of the laser leads to a broad continuum while higher harmonics become visible only at moderate focussing, hence lower intensity. We present a scaling law for the backscattered photon spectral density which facilitates averaging over electron beam phase space. Finally, we propose a set of realistic parameters such that the observation of intensity induced spectral red-shift, higher harmonics, and their substructure, becomes feasible.
A number of theoretical calculations have studied the effect of radiation reaction forces on radiation distributions in strong field counter-propagating electron beam-laser interactions, but could these effects - including quantum corrections - be observed in interactions with realistic bunches and focusing fields, as is hoped in a number of soon to be proposed experiments? We present numerical calculations of the angularly resolved radiation spectrum from an electron bunch with parameters similar to those produced in laser wakefield acceleration experiments, interacting with an intense, ultrashort laser pulse. For our parameters, the effects of radiation damping on the angular distribution and energy distribution of emph{photons} is not easily discernible for a realistic moderate emittance electron beam. However, experiments using such a counter-propagating beam-laser geometry should be able to measure such effects using current laser systems through measurement of the emph{electron beam} properties. In addition, the brilliance of this source is very high, with peak spectral brilliance exceeding $10^{29}$ photons$,$s$^{-1}$mm$^{-2}$mrad$^{-2}(0.1$% bandwidth$)^{-1}$ with approximately 2% efficiency and with a peak energy of 10 MeV.
X-Ray Thomson Scattering (XRTS) is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor (DSF). In most models, this is decomposed into three terms [Chihara, J. Phys. F: Metal Phys. {bf 17}, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا