Do you want to publish a course? Click here

Methanol Maser Associated Outflows: Detection statistics and properties

274   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have selected the positions of 54 6.7GHz methanol masers from the Methanol Multibeam Survey catalogue, covering a range of longitudes between $20^{circ}$ and $34^{circ}$ of the Galactic Plane. These positions were mapped in the J=3-2 transition of both the $rm{^{13}CO}$ and $rm{C^{18}O}$ lines. A total of 58 $rm{^{13}CO}$ emission peaks are found in the vicinity of these maser positions. We search for outflows around all $rm{^{13}CO}$ peaks, and find evidence for high-velocity gas in all cases, spatially resolving the red and blue outflow lobes in 55 cases. Of these sources, 44 have resolved kinematic distances, and are closely associated with the 6.7GHz masers, a sub-set referred to as Methanol Maser Associated Outflows (MMAOs). We calculate the masses of the clumps associated with each peak using 870 $rm{mu m}$ continuum emission from the ATLASGAL survey. A strong correlation is seen between the clump mass and both outflow mass and mechanical force, lending support to models in which accretion is strongly linked to outflow. We find that the scaling law between outflow activity and clump masses observed for low-mass objects, is also followed by the MMAOs in this study, indicating a commonality in the formation processes of low-mass and high-mass stars.

rate research

Read More

We present a continuing study of a sample 44 molecular outflows, observed in 13CO lines, closely associated with 6.7GHz methanol masers, hence called Methanol Maser Associated Outflows (MMAOs). We compare MMAO properties with those of outflows from other surveys in the literature. In general, MMAOs follow similar trends, but show a deficit in number at low masses and momenta, with a corresponding higher fraction at the high end of the distributions. A similar trend is seen for the dynamical timescales of MMAOs. We argue that the lack of relatively low mass and young flows in MMAOs is due to the inherent selection-bias in the sample, i.e. its direct association with 6.7GHz methanol masers. This implies that methanol masers must switch on after the onset of outflows (hence accretion), and not before a sufficient abundance of methanol is liberated from icy dust mantles. Consequently the average dynamical age of MMAOs is older than for the general population of molecular outflows. We propose an adjusted evolutionary sequence of outflow and maser occurrence in the hot core phase, where methanol masers turn on after the onset of the outflow phase.
We report the detection of new 12.178, 12.229, 20.347, and 23.121 GHz methanol masers in the massive star-forming region G358.93-0.03, which are flaring on similarly short timescales (days) as the 6.668 GHz methanol masers also associated with this source. The brightest 12.178 GHz channel increased by a factor of over 700 in just 50 d. The masers found in the 12.229 and 20.347 GHz methanol transitions are the first ever reported and this is only the fourth object to exhibit associated 23.121 GHz methanol masers. The 12.178 GHz methanol maser emission appears to have a higher flux density than that of the 6.668 GHz emission, which is unusual. No associated near-infrared flare counterpart was found, suggesting that the energy source of the flare is deeply embedded.
G111.256-0.770 is a high-mass young stellar object associated with a weak 6.7 GHz methanol maser showing strong variability. We present results of a multi-epoch monitoring program of the target, conducted with the Torun 32 m telescope for more than a decade. We found that the isotropic maser luminosity varied by a factor 16 on a timescale of 5-6 yr and individual features showed small amplitude short-lived (about 0.2 yr) bursts superimposed on higher amplitude slow (>5 yr) variations.
A 3D maser model has been used to perform an inverse problem on the light curves from three high-amplitude maser flares, selected on the basis of contemporaneous infra-red observations. Plots derived from the model recover the size of the maser cloud, and two parameters linked to saturation, from three observational properties of the light curve. Recovered sizes are consistent with independent interferometric measurements. Maser objects transition between weak and moderate saturation during a flare.
(Abridged) Astronomical masers have been effective tools to study magnetic fields for many years. In particular, methanol can be used to probe different parts of protostars such as accretion discs and outflows, since it produces one of the strongest and the most commonly observed masers in massive star-forming regions. We investigate the polarization properties of selected methanol maser transitions in light of newly calculated methanol Lande g-factors and considering hyperfine components. We compare our results with previous observations and we evaluate the effect of preferred hyperfine pumping and non-Zeeman effects. We run simulations using the radiative transfer code CHAMP. We find a dependence of linear and circular polarization fractions on the hyperfine transitions. Preferred hyperfine pumping can explain some high levels of linear and circular polarization and some of the peculiar features seen in the S-shape of observed V-profiles. Methanol masers are not significantly affected by non-Zeeman effects. Our models show that for methanol maser emission, both the linear and circular polarization percentages depend on which hyperfine transition is masing and the degree to which it is being pumped. Since non-Zeeman effects become more relevant at high values of brightness temperatures, it is important to obtain good estimates of these quantities and on maser beaming angles. Better constraints on the brightness temperature will help in understand about the extent to which non-Zeeman effects contribute to the observed polarization percentages. In order to detect separate hyperfine components, an intrinsic thermal line width significantly smaller than the hyperfine separation is required.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا