Do you want to publish a course? Click here

Temperature-driven band inversion in Pb$_{0.77}$Sn$_{0.23}$Se: Optical and Hall-effect studies

118   0   0.0 ( 0 )
 Added by Naween Anand
 Publication date 2014
  fields Physics
and research's language is English
 Authors Naween Anand




Ask ChatGPT about the research

Optical and Hall-effect measurements have been performed on single crystals of Pb$_{0.77}$Sn$_{0.23}$Se, a IV-VI mixed chalcogenide. The temperature dependent (10--300 K) reflectance was measured over 40--7000 cm$^{-1}$ (5--870 meV) with an extension to 15,500 cm$^{-1}$ (1.92 eV) at room temperature. The reflectance was fit to the Drude-Lorentz model using a single Drude component and several Lorentz oscillators. The optical properties at the measured temperatures were estimated via Kramers-Kronig analysis as well as by the Drude-Lorentz fit. The carriers were p-type with the carrier density determined by Hall measurements. A signature of valence intraband transition is found in the low-energy optical spectra. It is found that the valence-conduction band transition energy as well as the free carrier effective mass reach minimum values at 100 K, suggesting temperature-driven band inversion in the material. Density function theory calculation for the electronic band structure also make similar predictions.



rate research

Read More

Pb$_{0.77}$Sn$_{0.23}$Se is a novel alloy of two promising thermoelectric materials PbSe and SnSe that exhibits a temperature dependent band inversion below 300 K. Recent work has shown that this band inversion also coincides with a trivial to nontrivial topological phase transition. To understand how the properties critical to thermoelectric efficiency are affected by the band inversion, we measured the broadband optical response of Pb$_{0.77}$Sn$_{0.23}$Se as a function of temperature. We find clear optical evidence of the band inversion at $160pm15$ K, and use the extended Drude model to accurately determine a $T^{3/2}$ dependence of the bulk carrier lifetime, associated with electron-acoustic phonon scattering. Due to the high bulk carrier doping level, no discriminating signatures of the topological surface states are found, although their presence cannot be excluded from our data.
The recent discovery of a topological phase transition in IV-VI narrow-gap semiconductors has revitalized the decades-old interest in the bulk band inversion occurring in these materials. Here we systematically study the (001) surface states of Pb{1-x}Sn{x}Se mixed crystals by means of angle-resolved photoelectron spectroscopy in the parameter space 0 <= x <= 0.37 and 300 K >= T >= 9 K. Using the surface-state observations, we monitor directly the topological phase transition in this solid solution and gain valuable information on the evolution of the underlying fundamental band gap of the system. In contrast to common model expectations, the band-gap evolution appears to be nonlinear as a function of the studied parameters, resulting in the measuring of a discontinuous band inversion process. This finding signifies that the anticipated gapless bulk state is in fact not a stable configuration and that the topological phase transition therefore exhibits features akin to a first-order transition.
In addition to novel surface states, topological insulators can also exhibit robust gapless states at crystalline defects. Step edges constitute a class of common defects on the surface of crystals. In this work we establish the topological nature of one-dimensional (1D) bound states localized at step edges of the [001] surface of a topological crystalline insulator (TCI) Pb$_{0.7}$Sn$_{0.3}$Se, both theoretically and experimentally. We show that the topological stability of the step edge states arises from an emergent particle-hole symmetry of the surface low-energy physics, and demonstrate the experimental signatures of the particle-hole symmetry breaking. We also reveal the effects of an external magnetic field on the 1D bound states. Our work suggests the possibility of similar topological step edge modes in other topological materials with a rocks-salt structure.
The characteristics of topological insulators are manifested in both their surface and bulk properties, but the latter remain to be explored. Here we report bulk signatures of pressure-induced band inversion and topological phase transitions in Pb$_{1-x}$Sn$_x$Se ($x=$0.00, 0.15, and 0.23). The results of infrared measurements as a function of pressure indicate the closing and the reopening of the band gap as well as a maximum in the free carrier spectral weight. The enhanced density of states near the band gap in the topological phase give rise to a steep interband absorption edge. The change of density of states also yields a maximum in the pressure dependence of the Fermi level. Thus our conclusive results provide a consistent picture of pressure-induced topological phase transitions and highlight the bulk origin of the novel properties in topological insulators.
106 - J. Matsuno , N. Ogawa , K. Yasuda 2016
Electron transport coupled with magnetism has attracted attention over the years as exemplified in anomalous Hall effect due to a Berry phase in momentum space. Another type of unconventional Hall effect -- topological Hall effect, originating from the real-space Berry phase, has recently become of great importance in the context of magnetic skyrmions. We have observed topological Hall effect in bilayers consisting of ferromagnetic SrRuO$_3$ and paramagnetic SrIrO$_3$ over a wide region of both temperature and magnetic field. The topological term rapidly decreases with the thickness of SrRuO$_3$, ending up with the complete disappearance at 7 unit cells of SrRuO$_3$. Combined with model calculation, we concluded that the topological Hall effect is driven by interface Dzyaloshinskii-Moriya interaction, which is caused by both the broken inversion symmetry and the strong spin-orbit coupling of SrIrO$_3$. Such interaction is expected to realize the N{e}el-type magnetic skyrmion, of which size is estimated to be $sim$10 nm from the magnitude of topological Hall resistivity. The results established that the high-quality oxide interface enables us to tune the chirality of the system; this can be a step towards the future topological electronics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا