Do you want to publish a course? Click here

Detecting genuine multipartite quantum non-locality -- a simple approach and generalization to arbitrary dimension

141   0   0.0 ( 0 )
 Added by Jean-Daniel Bancal
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The structure of Bell-type inequalities detecting genuine multipartite non-locality, and hence detecting genuine multipartite entanglement, is investigated. We first present a simple and intuitive approach to Svetlichnys original inequality, which provides a clear understanding of its structure and of its violation in quantum mechanics. Based on this approach, we then derive a family of Bell-type inequalities for detecting genuine multipartite non-locality in scenarios involving an arbitrary number of parties and systems of arbitrary dimension. Finally we discuss the thightness and quantum mechanical violations of these inequalities.



rate research

Read More

Bell inequalities define experimentally observable quantities to detect non-locality. In general, they involve correlation functions of all the parties. Unfortunately, these measurements are hard to implement for systems consisting of many constituents, where only few-body correlation functions are accessible. Here we demonstrate that higher-order correlation functions are not necessary to certify nonlocality in multipartite quantum states by constructing Bell inequalities from one- and two-body correlation functions for an arbitrary number of parties. The obtained inequalities are violated by some of the Dicke states, which arise naturally in many-body physics as the ground states of the two-body Lipkin-Meshkov-Glick Hamiltonian.
Non-contextuality (NC) and Bell inequalities can be expressed as bounds $Omega$ for positive linear combinations $S$ of probabilities of events, $S leq Omega$. Exclusive events in $S$ can be represented as adjacent vertices of a graph called the exclusivity graph of $S$. In the case that events correspond to the outcomes of quantum projective measurements, quantum probabilities are intimately related to the Grotschel-Lovasz-Schrijver theta body of the exclusivity graph. Then, one can easily compute an upper bound to the maximum quantum violation of any NC or Bell inequality by optimizing $S$ over the theta body and calculating the Lovasz number of the corresponding exclusivity graph. In some cases, this upper bound is tight and gives the exact maximum quantum violation. However, in general, this is not the case. The reason is that the exclusivity graph does not distinguish among the different ways exclusivity can occur in Bell-inequality (and similar) scenarios. An interesting question is whether there is a graph-theoretical concept which accounts for this problem. Here we show that, for any given $N$-partite Bell inequality, an edge-coloured multigraph composed of $N$ single-colour graphs can be used to encode the relationships of exclusivity between each partys parts of the events. Then, the maximum quantum violation of the Bell inequality is exactly given by a refinement of the Lovasz number that applies to these edge-coloured multigraphs. We show how to calculate upper bounds for this number using a hierarchy of semi-definite programs and calculate upper bounds for $I_3$, $I_{3322}$ and the three bipartite Bell inequalities whose exclusivity graph is a pentagon. The multigraph-theoretical approach introduced here may remove some obstacles in the program of explaining quantum correlations from first principles.
We study the relations between quantum coherence and quantum nonlocality, genuine quantum entanglement and genuine quantum nonlocality. We show that the coherence of a qubit state can be converted to the nonlocality of two-qubit states via incoherent operations. The results are also generalized to qudit case. Furthermore, rigorous relations between the quantum coherence of a single-partite state and the genuine multipartite quantum entanglement, as well as the genuine three-qubit quantum nonlocality are established.
120 - S. Gerke , J. Sperling , W. Vogel 2016
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially when the system involves more than two parties, for which different partitions must be simultaneously considered. In the case of mixed states, intermediate levels of correlations must be introduced, coined by the name inseparability. In this work, we revisit in more detail such a concept in the context of continuous-variable quantum optics. We consider a six-partite quantum state that we have effectively generated by the parametric downconversion of a femtosecond frequency comb, the full 12 x 12 covariance matrix of which has been experimentally determined. We show that, though this state does not exhibit genuine entanglement, it is undoubtedly multipartite-entangled. The consideration of not only the entanglement of individual mode-decompositions but also of combinations of those solves the puzzle and exemplifies the importance of studying different categories of multipartite entanglement.
368 - Guangming Jiang , Xiaohua Wu , 2021
According to the fundamental idea that a steering inequality can be constructed by just considering the measurements performed by Bob, and from the definitions of steering from Alice to Bob, a general scheme for designing linear steering inequalities (LSIs) is developed to detect the genuine multipartite two-way steerability. A special class of LSIs, which are constructed from the Bell operators, are introduced. Furthermore, several other types of LSIs are also considered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا