Do you want to publish a course? Click here

Evolution of statistical averages: an interdisciplinary proposal using the Chapman-Enskog method

88   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work examines the idea of applying the Chapman-Enskog (CE) method for approximating the solution of the Boltzmann equation beyond the realm of physics, using an information theory approach. Equations describing the evolution of averages and their fluctuations in a generalized phase space are established up to first order in the Knudsen parameter, which is defined as the ratio of the time between interactions (mean free time) and a characteristic macroscopic time. Although the general equations here obtained may be applied in a wide range of disciplines, in this paper only a particular case related to the evolution of averages in speculative markets is examined.



rate research

Read More

52 - F. Cornu 2006
We derive the exact solution of the Boltzmann kinetic equation for the three-dimensional Lorentz model in the presence of a constant and uniform magnetic field. The velocity distribution of the electrons reduces exponentially fast to its spherically symmetric component. In the long time hydrodynamic limit there remains only the diffusion process governed by an anisotropic diffusion tensor. The systematic way of building the Chapman-Enskog solutions is described.
The Chapman-Enskog method of solution of the relativistic Boltzmann equation is generalized in order to admit a time-derivative term associated to a thermodynamic force in its first order solution. Both existence and uniqueness of such a solution are proved based on the standard theory of integral equations. The mathematical implications of the generalization here introduced are thoroughly discussed regarding the nature of heat as chaotic energy transfer in the context of relativity theory.
We address the well-posedness of the Cauchy problem corresponding to the relativistic fluid equations, when coupled with the heat-flux constitutive relation arising within the relativistic Chapman-Enskog procedure. The resulting system of equations is shown to be non hyperbolic, by considering general perturbations over the whole set of equations written with respect to a generic time direction. The obtained eigenvalues are not purely imaginary and their real part grows without bound as the wave-number increases. Unlike Eckarts theory, this instability is not present when the time direction is aligned with the fluids direction. However, since in general the fluid velocity is not surface-forming, the instability can only be avoided in the particular case where no rotation is present.
Extended theories are widely used in the literature to describe relativistic fluids. The motivation for this is mostly due to the causality issues allegedly present in the first order in the gradients theories. However, the decay of fluctuations in the system is also at stake when first order theories that couple heat with acceleration are used. This paper shows that although the introduction of the Maxwell-Cattaneo equation in the description of a simple relativistic fluid formally eliminates the generic instabilities identified by Hiscock and Lindblom in 1985, the hypothesis on the order of magnitude of the corresponding relaxation term contradicts the basic ordering in Knudsens parameter present in the kinetic approach to hydrodynamics. It is shown that the time derivative, stabilizing term is of second order in such parameter and thus does not belong to the Navier-Stokes regime where the so-called instability arises.
The Navier--Stokes transport coefficients of multicomponent granular suspensions at moderate densities are obtained in the context of the (inelastic) Enskog kinetic theory. The suspension is modeled as an ensemble of solid particles where the influence of the interstitial gas on grains is via a viscous drag force plus a stochastic Langevin-like term defined in terms of a background temperature. In the absence of spatial gradients, it is shown first that the system reaches a homogeneous steady state where the energy lost by inelastic collisions and viscous friction is compensated for by the energy injected by the stochastic force. Once the homogeneous steady state is characterized, a emph{normal} solution to the set of Enskog equations is obtained by means of the Chapman--Enskog expansion around the emph{local} version of the homogeneous state. To first-order in spatial gradients, the Chapman--Enskog solution allows us to identify the Navier--Stokes transport coefficients associated with the mass, momentum, and heat fluxes. In addition, the first-order contributions to the partial temperatures and the cooling rate are also calculated. Explicit forms for the diffusion coefficients, the shear and bulk viscosities, and the first-order contributions to the partial temperatures and the cooling rate are obtained in steady-state conditions by retaining the leading terms in a Sonine polynomial expansion. The results show that the dependence of the transport coefficients on inelasticity is clearly different from that found in its granular counterpart (no gas phase). The present work extends previous theoretical results for emph{dilute} multicomponent granular suspensions [Khalil and Garzo, Phys. Rev. E textbf{88}, 052201 (2013)] to higher densities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا