No Arabic abstract
Non-equilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fraction and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluid-like behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition which, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped microorganisms.
We study the glassy dynamics taking place in dense assemblies of athermal active particles that are driven solely by a nonequilibrium self-propulsion mechanism. Active forces are modeled as an Ornstein-Uhlenbeck stochastic process, characterized by a persistence time and an effective temperature, and particles interact via a Lennard-Jones potential that yields well-studied glassy behavior in the Brownian limit, obtained as the persistence time vanishes. By increasing the persistence time, the system departs more strongly from thermal equilibrium and we provide a comprehensive numerical analysis of the structure and dynamics of the resulting active fluid. Finite persistence times profoundly affect the static structure of the fluid and give rise to nonequilibrium velocity correlations that are absent in thermal systems. Despite these nonequilibrium features, for any value of the persistence time we observe a nonequilibrium glass transition as the effective temperature is decreased. Surprisingly, increasing departure from thermal equilibrium is found to promote (rather than suppress) the glassy dynamics. Overall, our results suggest that with increasing persistence time, microscopic properties of the active fluid change quantitatively, but the broad features of the nonequilibrium glassy dynamics observed with decreasing the effective temperature remain qualitatively similar to those of thermal glass-formers.
Using overdamped Brownian dynamics simulations we investigate the isotropic-nematic (IN) transition of self-propelled rods in three spatial dimensions. For two well-known model systems (Gay-Berne potential and hard spherocylinders) we find that turning on activity moves to higher densities the phase boundary separating an isotropic phase from a (nonpolar) nematic phase. This active IN phase boundary is distinct from the boundary between isotropic and polar-cluster states previously reported in two-dimensional simulation studies and, unlike the latter, is not sensitive to the system size. We thus identify a generic feature of anisotropic active particles in three dimensions.
We combine computer simulations and analytical theory to investigate the glassy dynamics in dense assemblies of athermal particles evolving under the sole influence of self-propulsion. The simulations reveal that when the persistence time of the self-propelled particles is increased, the local structure becomes more pronounced whereas the long-time dynamics first accelerates and then slows down. These seemingly contradictory evolutions are explained by constructing a nonequilibrium mode-coupling-like theory for interacting self-propelled particles. To predict the collective dynamics the theory needs the steady state structure factor and the steady state correlations of the local velocities. It yields nontrivial predictions for the glassy dynamics of self-propelled particles in qualitative agreement with the simulations.
Using experiments with anisotropic vibrated rods and quasi-2D numerical simulations, we show that shape plays an important role in the collective dynamics of self-propelled (SP) particles. We demonstrate that SP rods exhibit local ordering, aggregation at the side walls, and clustering absent in round SP particles. Furthermore, we find that at sufficiently strong excitation SP rods engage in a persistent swirling motion in which the velocity is strongly correlated with particle orientation.
A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider a fundamental but still unexplored aspect of the patterns arising in the system of actively moving units, i.e., their segregation taking place when two kinds of them with different adhesive properties are present. The process of segregation is studied by a model made of self-propelled particles such that the particles have a tendency to adhere only to those which are of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that the segregation kinetics is very different from the non-driven counterparts and is described by the new scaling exponents $zsimeq 1$ and $zsimeq 0.8$ for the 1:1 and the non-equal ratio of the two constituents, respectively. Our results are in agreement with a recent observation of segregating tissue cells emph{in vitro}.