Do you want to publish a course? Click here

Swarming and swirling in self-propelled polar granular rods

122   0   0.0 ( 0 )
 Added by Arshad Kudrolli
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using experiments with anisotropic vibrated rods and quasi-2D numerical simulations, we show that shape plays an important role in the collective dynamics of self-propelled (SP) particles. We demonstrate that SP rods exhibit local ordering, aggregation at the side walls, and clustering absent in round SP particles. Furthermore, we find that at sufficiently strong excitation SP rods engage in a persistent swirling motion in which the velocity is strongly correlated with particle orientation.



rate research

Read More

The symmetry of the alignment mechanism in systems of polar self-propelled particles determines the possible macroscopic large-scale patterns that can emerge. Here we compare polar and apolar alignment. These systems share some common features like giant number fluctuations in the ordered phase and self-segregation in the form of bands near the onset of orientational order. Despite these similarities, there are essential differences like the symmetry of the ordered phase and the stability of the bands.
We study collections of self-propelled rods (SPR) moving in two dimensions for packing fractions less than or equal to 0.3. We find that in the thermodynamical limit the SPR undergo a phase transition between a disordered gas and a novel phase-separated system state. Interestingly, (global) orientational order patterns -- contrary to what has been suggested -- vanish in this limit. In the found novel state, the SPR self-organize into a highly dynamical, high-density, compact region - which we call aggregate - which is surrounded by a disordered gas. Active stresses build inside aggregates as result of the combined effect of local orientational order and active forces. This leads to the most distinctive feature of these aggregates: constant ejection of polar clusters of SPR. This novel phase-separated state represents a novel state of matter characterized by large fluctuations in volume and shape, related to mass ejection, and exhibits positional as well as orientational local order. SPR systems display new physics unseen in other active matter systems due to the coupling between density, active stresses, and orientational order (such coupling cannot be reduced simply to a coupling between speed and density).
Using overdamped Brownian dynamics simulations we investigate the isotropic-nematic (IN) transition of self-propelled rods in three spatial dimensions. For two well-known model systems (Gay-Berne potential and hard spherocylinders) we find that turning on activity moves to higher densities the phase boundary separating an isotropic phase from a (nonpolar) nematic phase. This active IN phase boundary is distinct from the boundary between isotropic and polar-cluster states previously reported in two-dimensional simulation studies and, unlike the latter, is not sensitive to the system size. We thus identify a generic feature of anisotropic active particles in three dimensions.
Non-equilibrium active matter made up of self-driven particles with short-range repulsive interactions is a useful minimal system to study active matter as the system exhibits collective motion and nonequilibrium order-disorder transitions. We studied high-aspect-ratio self-propelled rods over a wide range of packing fraction and driving to determine the nonequilibrium state diagram and dynamic properties. Flocking and nematic-laning states occupy much of the parameter space. In the flocking state the average internal pressure is high and structural and mechanical relaxation times are long, suggesting that rods in flocks are in a translating glassy state despite overall flock motion. In contrast, the nematic-laning state shows fluid-like behavior. The flocking state occupies regions of the state diagram at both low and high packing fraction separated by nematic-laning at low driving and a history-dependent region at higher driving; the nematic-laning state transitions to the flocking state for both compression and expansion. We propose that the laning-flocking transitions are a type of glass transition which, in contrast to other glass-forming systems, can show fluidization as density increases. The fluid internal dynamics and ballistic transport of the nematic-laning state may promote collective dynamics of rod-shaped microorganisms.
We report on experiments to measure the temporal and spatial evolution of packing arrangements of anisotropic, cylindrical granular material, using high-resolution capacitive monitoring. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical vibrations evolve to a dense, highly ordered, nematic state in which the long particle axes align with the vertical tube walls. We find that the orientational ordering process is reflected in a characteristic, steep rise in the local packing fraction. At any given height inside the packing, the ordering is initiated at the container walls and proceeds inward. We explore the evolution of the local as well as the height-averaged packing fraction as a function of vibration parameters and compare our results to relaxation experiments conducted on spherically shaped granular materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا