No Arabic abstract
The effects induced by the quantum vacuum fluctuations of one massless real scalar field on a configuration of two partially transparent plates are investigated. The physical properties of the infinitely thin plates are simulated by means of Dirac-$delta-delta^prime$ point interactions. It is shown that the distortion caused on the fluctuations by this external background gives rise to a generalization of Robin boundary conditions. The $T$-operator for potentials concentrated on points with non defined parity is computed with total generality. The quantum vacuum interaction energy between the two plates is computed using the $TGTG$ formula to find positive, negative, and zero Casimir energies. The parity properties of the $delta-delta^prime$ potential allow repulsive quantum vacuum force between identical plates.
We explore boundary scattering in the sine-Gordon model with a non-integrable family of Robin boundary conditions. The soliton content of the field after collision is analysed using a numerical implementation of the direct scattering problem associated with the inverse scattering method. We find that an antikink may be reflected into various combinations of an antikink, a kink, and one or more breathers, depending on the values of the initial antikink velocity and a parameter associated with the boundary condition. In addition we observe regions with an intricate resonance structure arising from the creation of an intermediate breather whose recollision with the boundary is highly dependent on the breather phase.
We study the Casimir effect for scalar fields with general curvature coupling subject to mixed boundary conditions $(1+beta_{m}n^{mu}partial_{mu})phi =0$ at $x=a_{m}$ on one ($m=1$) and two ($m=1,2$) parallel plates at a distance $aequiv a_{2}-a_{1}$ from each other. Making use of the generalized Abel-Plana formula previously established by one of the authors cite{Sahrev}, the Casimir energy densities are obtained as functions of $beta_{1}$ and of $beta_{1}$,$beta_{2}$,$a$, respectively. In the case of two parallel plates, a decomposition of the total Casimir energy into volumic and superficial contributions is provided. The possibility of finding a vanishing energy for particular parameter choices is shown, and the existence of a minimum to the surface part is also observed. We show that there is a region in the space of parameters defining the boundary conditions in which the Casimir forces are repulsive for small distances and attractive for large distances. This yields to an interesting possibility for stabilizing the distance between the plates by using the vacuum forces.
Electromagnetic field interactions in a dielectric medium represent a longstanding field of investigation, both at the classical level and at the quantum one. We propose a 1+1 dimensional toy-model which consists of an half-line filling dielectric medium, with the aim to set up a simplified situation where technicalities related to gauge invariance and, as a consequence, physics of constrained systems are avoided, and still interesting features appear. In particular, we simulate the electromagnetic field and the polarization field by means of two coupled scalar fields $phi$,$psi$ respectively, in a Hopfield-like model. We find that, in order to obtain a physically meaningful behaviour for the model, one has to introduce spectral boundary conditions depending on the particle spectrum one is dealing with. This is the first interesting achievement of our analysis. The second relevant achievement is that, by introducing a nonlinear contribution in the polarization field $psi$, with the aim of mimicking a third order nonlinearity in a nonlinear dielectric, we obtain solitonic solutions in the Hopfield model framework, whose classical behaviour is analyzed too.
The basic characteristics of the covariant chiral current $<J_{mu}>$ and the covariant chiral energy-momentum tensor $<T_{mu u}>$ are obtained from a chiral effective action. These results are used to justify the covariant boundary condition used in recent approaches cite{Isowilczek,Isoumtwilczek,shailesh,shailesh2,Banerjee} of computing the Hawking flux from chiral gauge and gravitational anomalies. We also discuss a connection of our results with the conventional calculation of nonchiral currents and stress tensors in different (Unruh, Hartle-Hawking and Boulware) states.
The worldline formalism has been widely used to compute physical quantities in quantum field theory. However, applications of this formalism to quantum fields in the presence of boundaries have been studied only recently. In this article we show how to compute in the worldline approach the heat kernel expansion for a scalar field with boundary conditions of Robin type. In order to describe how this mechanism works, we compute the contributions due to the boundary conditions to the coefficients A_1, A_{3/2} and A_2 of the heat kernel expansion of a scalar field on the positive real line.