Do you want to publish a course? Click here

Quasinormal modes and Regge poles of the canonical acoustic hole

70   0   0.0 ( 0 )
 Added by Sam Dolan Dr
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compute the quasinormal mode frequencies and Regge poles of the canonical acoustic hole (a black hole analogue), using three methods. First, we show how damped oscillations arise by evolving generic perturbations in the time domain using a simple finite-difference scheme. We use our results to estimate the fundamental QN frequencies of the low multipolar modes $l=1, 2, ldots$. Next, we apply an asymptotic method to obtain an expansion for the frequency in inverse powers of $l+1/2$ for low overtones. We test the expansion by comparing against our time-domain results, and (existing) WKB results. The expansion method is then extended to locate the Regge poles. Finally, to check the expansion of Regge poles we compute the spectrum numerically by direct integration in the frequency domain. We give a geometric interpretation of our results and comment on experimental verification.



rate research

Read More

The quasinormal modes (QNMs) of a regular black hole with charge are calculated in the eikonal approximation. In the eikonal limit the QNMs of black hole are determined by the parameters of the unstable circular null geodesics. The behaviors of QNMs are compared with QNMs of Reisner-Nordstr{o}m black hole, it is done by fixing some of the parameters that characterize the black holes and varying another. We observed that the parameter that is related one effective cosmological constant at small distances , determines the behaviors of the QNMs of regular black hole with charge.
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (light ring) of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of specific models than on an actual constraining relationship. We also show, in particular, that a better understanding of the dissociation of the two may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.
For a two-dimensional black hole we determine the quasinormal frequencies of the Klein-Gordon and Dirac fields. In contrast to the well known examples whose spectrum of quasinormal frequencies is discrete, for this black hole we find a continuous spectrum of quasinormal frequencies, but there are unstable quasinormal modes. In the framework of the Hod and Maggiore proposals we also discuss the consequences of these results on the form of the entropy spectrum for the two-dimensional black hole.
Deep conceptual problems associated with classical black holes can be addressed in string theory by the fuzzball paradigm, which provides a microscopic description of a black hole in terms of a thermodynamically large number of regular, horizonless, geometries with much less symmetry than the corresponding black hole. Motivated by the tantalizing possibility to observe quantum gravity signatures near astrophysical compact objects in this scenario, we perform the first $3+1$ numerical simulations of a scalar field propagating on a large class of multicenter geometries with no spatial isometries arising from ${cal N}=2$ four-dimensional supergravity. We identify the prompt response to the perturbation and the ringdown modes associated with the photon sphere, which are similar to the black-hole case, and the appearence of echoes at later time, which is a smoking gun of the absence of a horizon and of the regular interior of these solutions. The response is in agreement with an analytical model based on geodesic motion in these complicated geometries. Our results provide the first numerical evidence for the dynamical linear stability of fuzzballs, and pave the way for an accurate discrimination between fuzzballs and black holes using gravitational-wave spectroscopy.
In this article we show that the asymptotic iteration method (AIM) allows one to numerically find the quasinormal modes of Schwarzschild and Schwarzschild de Sitter (SdS) black holes. An added benefit of the method is that it can also be used to calculate the Schwarzschild anti-de Sitter (SAdS) quasinormal modes for the case of spin zero perturbations. We also discuss an improved version of the AIM, more suitable for numerical implementation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا