Do you want to publish a course? Click here

Experimental generation of multiple quantum correlated beams from hot rubidium vapor

99   0   0.0 ( 0 )
 Added by Jietai Jing
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum correlations and entanglement shared among multiple quantum modes are important for both fundamental science and the future development of quantum technologies. This development will also require an efficient quantum interface between multimode quantum light sources and atomic ensembles, which makes it necessary to implement multimode quantum light sources that match the atomic transitions. Here we report on such a source that provides a method for generating quantum correlated beams that can be extended to a large number of modes by using multiple four-wave mixing (FWM) processes in hot rubidium vapor. Experimentally we show that two cascaded FWM processes produce strong quantum correlations between three bright beams but not between any two of them. In addition, the intensity-difference squeezing is enhanced with the cascaded system to -7.0 $pm$ 0.1 dB from the -5.5 $pm$ 0.1/-4.5 $pm$ 0.1 dB squeezing obtained with only one FWM process. One of the main advantages of our system is that as the number of quantum modes increases, so does the total degree of quantum correlations. The proposed method is also immune to phase instabilities due to its phase insensitive nature, can easily be extended to multiple modes, and has potential applications in the production of multiple quantum correlated images.



rate research

Read More

Entangled multi-spatial-mode fields have interesting applications in quantum information, such as parallel quantum information protocols, quantum computing, and quantum imaging. We study the use of a nondegenerate four-wave mixing process in rubidium vapor at 795 nm to demonstrate generation of quantum-entangled images. Owing to the lack of an optical resonator cavity, the four-wave mixing scheme generates inherently multi-spatial-mode output fields. We have verified the presence of entanglement between the multi-mode beams by analyzing the amplitude difference and the phase sum noise using a dual homodyne detection scheme, measuring more than 4 dB of squeezing in both cases. This paper will discuss the quantum properties of amplifiers based on four-wave-mixing, along with the multi mode properties of such devices.
We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices up to 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB$pm$0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters.
We experimentally investigate the optical storage of perfect optical vortex (POV) and spatially multimode perfect optical vortex (MPOV) beams via electromagnetically induced transparency (EIT) in a hot vapor cell. In particular, we study the role that phase gradients and phase singularities play in reducing the blurring of the retrieved images due to atomic diffusion. Three kinds of manifestations are enumerated to demonstrate such effect. Firstly, the suppression of the ring width broadening is more prominent for POVs with larger orbital angular momentum (OAM). Secondly, the retrieved double-ring MPOV beams profiles present regular dark singularity distributions that are related to their vortex charge difference. Thirdly, the storage fidelities of the triple-ring MPOVs are substantially improved by designing line phase singularities between multi-ring MPOVs with the same OAM number but $pi$ offset phases between adjacent rings. Our experimental demonstration of MPOV storage opens new opportunities for increasing data capacity in quantum memories by spatial multiplexing, as well as the generation and manipulation of complex optical vortex arrays.
Space variant beams are of great importance as a variety of applications have emerged in recent years. As such, manipulation of their degrees of freedom is highly desired. Here, by exploiting the circular dichroism and circular birefringence in a Zeeman-shifted Rb medium, we study the general interaction of space variant beams with such a medium. We present two particular cases of radial polarization and hybrid polarization beams where the control of the polarization states is demonstrated experimentally. Moreover, we show that a Zeeman-shifted atomic system can be used as an analyzer for such space variant beams
525 - V. Boyer , A. M. Marino , 2007
We generate spatially multimode twin beams using 4-wave mixing in a hot atomic vapor in a phase-insensitive traveling-wave amplifier configuration. The far-field coherence area measured at 3.5 MHz is shown to be much smaller than the angular bandwidth of the process and bright twin images with independently quantum-correlated sub-areas can be generated with little distortion. The available transverse degrees of freedom form a high-dimensional Hilbert space which we use to produce quantum-correlated twin beams with finite orbital angular momentum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا