Do you want to publish a course? Click here

Simple 3-3-1 model and implication for dark matter

153   0   0.0 ( 0 )
 Added by Phung Van Dong
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We propose a new and realistic 3-3-1 model with the minimal lepton and scalar contents, named the simple 3-3-1 model. The scalar sector contains two new heavy Higgs bosons, one neutral H and another singly-charged H^pm, besides the standard model Higgs boson. There is a mixing between the Z boson and the new neutral gauge boson (Z). The rho parameter constrains the 3-3-1 breaking scale (w) to be w>460 GeV. The quarks get consistent masses via five-dimensional effective interactions while the leptons via interactions up to six dimensions. Particularly, the neutrino small masses are generated as a consequence of the approximate lepton-number symmetry of the model. The proton is stabilized due to the lepton-parity conservation (-1)^L. The hadronic FCNCs are calculated that give a bound w>3.6 TeV and yield that the third quark generation is different from the first two. The correct mass generation for top quark implies that the minimal scalar sector as proposed is unique. By the simple 3-3-1 model, the other scalars beside the minimal ones can behave as inert fields responsible for dark matter. A triplet, doublet and singlet dark matter are respectively recognized. Our proposals provide the solutions for the long-standing dark matter issue in the minimal 3-3-1 model.



rate research

Read More

We present the features of the fully flipped 3-3-1-1 model and show that this model leads to dark matter candidates naturally. We study two dark matter scenarios corresponding to the triplet fermion and singlet scalar candidates, and we determine the viable parameter regimes constrained from the observed relic density and direct detection experiments.
114 - D. T. Huong , P. V. Dong 2016
In this work, we interpret the 3-3-1-1 model when the B-L and 3-3-1 breaking scales behave simultaneously as the inflation scale. This setup not only realizes the previously-achieved consequences of inflation and leptogenesis, but also provides new insights in superheavy dark matter and neutrino masses. We argue that the 3-3-1-1 model can incorporate a scalar sextet, which induces both small masses for the neutrinos via a combined type I and II seesaw and large masses for the new neutral fermions. Additionally, all the new particles have the large masses in the inflation scale. The lightest particle among the W-particles that have abnormal (i.e., wrong) B-L number in comparison to those of the standard model particles may be a superheavy dark matter as it is stabilized by the W-parity. The dark matter candidate may be a Majorana fermion, a neutral scalar, or a neutral gauge boson, which was properly created in the early universe due to the gravitational effects on the vacuum or the thermal production after cosmic inflation.
The flipped 3-3-1 model discriminates lepton families instead of the quark ones in normal sense, where the left-handed leptons are in two triplets plus one sextet while the left-handed quarks are in antitriplets, under $SU(3)_L$. We investigate a minimal setup of this model and determine novel consequences of dark matter stability, neutrino mass generation, and lepton flavor violation. Indeed, the model conserves a noncommutative $B-L$ symmetry, which prevents the unwanted vacua and interactions and provides the matter parity and dark matter candidates that along with normal matter form gauge multiplets. The neutrinos obtain suitable masses via a type I and II seesaw mechanism. The nonuniversal couplings of $Z$ with leptons govern lepton flavor violating processes such as $mu rightarrow 3e$, $murightarrow e bar{ u}_mu u_e$, $mu$-$e$ conversion in nuclei, semileptonic $taurightarrow mu(e)$ decays, as well as the nonstandard interactions of neutrinos with matter. This $Z$ may also set the dark matter observables and give rise to the LHC dilepton and dijet signals.
We prove that the $SU(3)_Cotimes SU(2)_L otimes SU(3)_Rotimes U(1)_X$ (3-2-3-1) gauge model always contains a matter parity $W_P=(-1)^{3(B-L)+2s}$ as conserved residual gauge symmetry, where $B-L=2(beta T_{8R}+X)$ is a $SU(3)_Rotimes U(1)_X$ charge. Due to the non-Abelian nature of $B-L$, the $W$-odd and $W$-even fields are actually unified in gauge multiplets. We investigate two viab
The simple 3-3-1 model that contains the minimal lepton and minimal scalar contents is detailedly studied. The impact of the inert scalars (i.e., the extra fundamental fields that provide realistic dark matter candidates) on the model is discussed. All the interactions of the model are derived, in which the standard model ones are identified. We constrain the standard model like Higgs particle at the LHC. We search for the new particles including the inert ones, which contribute to the $B_s$-$bar{B}_s$ mixing, the rare $B_srightarrow mu^+mu^-$ decay, the CKM unitarity violation, as well as producing the dilepton, dijet, diboson, diphoton, and monojet final states at the LHC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا