No Arabic abstract
The structural, elastic, magnetic properties, as well as electronic structure and chemical bonding picture of new oxide 3d1-perovskite BaVO3, recently synthesized, were systematically investigated involving the first-principles FLAPW-GGA calculations. The obtained results are discussed in comparison with available experimental data, as well as with those obtained before for isostructural and isoelectronic SrVO3 perovskite.
First principles study of structural, elastic, and electronic properties of the cubic perovskitetype BaHfO$_3$ has been performed using the plane wave ultrasoft pseudo-potential method based on density functional theory with revised Perdew-Burke-Ernzerhof exchange-correlation functional of the generalized gradient approximation (GGA-RPBE). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (emph{C}$_{11}$, emph{C}$_{12}$, and emph{C}$_{44}$), bulk modules emph{B} and its pressure derivatives $B^{prime}$, compressibility $beta$, shear modulus emph{G}, Youngs modulus emph{Y}, Poissons ratio $ u$, and Lam{e} constants ($mu, lambda$) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO$_3$. The band structure calculations show that BaHfO$_3$ is a indirect bandgap material (R-$Gamma$ = 3.11 eV) derived basically from the occupied O 2emph{p} and unoccupied Hf 5emph{d} states, and it still awaits experimental confirmation. The density of states (total, site-projected, and emph{l}-decomposed) and the bonding charge density calculations make it clear that the covalent bonds exist between the Hf and O atoms and the ionic bonds exist between the Ba atoms and HfO$_3$ ionic groups in BaHfO$_3$. From our calculations, it is shown that BaHfO$_3$ should be promising as a candidate for synthesis and design of superhard materials due to the covalent bonding between the transition metal Hf 5emph{d} and O 2emph{p} states.
The molybdate oxides SrMoO$_3$, PbMoO$_3$, and LaMoO$_3$ are a class of metallic perovskites that exhibit interesting properties including high mobility, and unusual resistivity behavior. We use first-principles methods based on density functional theory to explore the electronic, crystal, and magnetic structure of these materials. In order to account for the electron correlations in the partially-filled Mo $4d$ shell, a local Hubbard $U$ interaction is included. The value of $U$ is estimated via the constrained random-phase approximation approach, and the dependence of the results on the choice of $U$ are explored. For all materials, GGA+$U$ predicts a metal with an orthorhombic, antiferromagnetic structure. For LaMoO$_3$, the $Pnma$ space group is the most stable, while for SrMoO$_3$ and PbMoO$_3$, the $Imma$ and $Pnma$ structures are close in energy. The $R_4^+$ octahedral rotations for SrMoO$_3$ and PbMoO$_3$ are found to be overestimated compared to the experimental low-temperature structure.
The full-potential linearized augmented plane wave method with the generalized gradient approximation for the exchange-correlation potential (FLAPW-GGA) is used to predict the electronic and elastic properties of the newly discovered superconducting nanolaminate Ti2InC. The band structure, density of states and Fermi surface features are discussed. The optimized lattice parameters, independent elastic constants, bulk and shear moduli, compressibility are evaluated and discussed. The elastic parameters of the polycrystalline Ti2InC ceramics are estimated numerically for the first time.
Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010] and [001] directions. The three methods agree well with each other, the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters.
Density Functional Theory calculations have been performed to obtain lattice parameters, elastic constants, and electronic properties of ideal pyrochlores with the composition A$_2$B$_2$O$_7$ (where A=La,Y and B=Ti,Sn,Hf, Zr). Some thermal properties are also inferred from the elastic properties. A decrease of the sound velocity (and thus, of the Debye temperature) with the atomic mass of the B ion is observed. Static and dynamical atomic charges are obtained to quantify the degree of covalency/ionicity. A large anomalous contribution to the dynamical charge is observed for Hf, Zr, and specially for Ti. It is attributed to the hybridization between occupied $2p$ states of oxygen and unoccupied d states of the B cation. The analysis based on Mulliken population and deformation charge integrated in the Voronoi polyhedra indicates that the ionicity of these pyrochlores increases in the order Sn--Ti--Hf--Zr. The charge deformation contour plots support this assignment.