Do you want to publish a course? Click here

Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

121   0   0.0 ( 0 )
 Added by Enrico Malizia
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs $mathcal{G}$ and $mathcal{H}$, decide whether $mathcal{H}$ consists precisely of all minimal transversals of $mathcal{G}$ (in which case we say that $mathcal{G}$ is the dual of $mathcal{H}$). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in $mathrm{GC}(log^2 n,mathrm{PTIME})$, where $mathrm{GC}(f(n),mathcal{C})$ denotes the complexity class of all problems that after a nondeterministic guess of $O(f(n))$ bits can be decided (checked) within complexity class $mathcal{C}$. It was conjectured that non-DUAL is in $mathrm{GC}(log^2 n,mathrm{LOGSPACE})$. In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class $mathrm{GC}(log^2 n,mathrm{TC}^0)$ which is a subclass of $mathrm{GC}(log^2 n,mathrm{LOGSPACE})$. We here refer to the logtime-uniform version of $mathrm{TC}^0$, which corresponds to $mathrm{FO(COUNT)}$, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess $O(log^2 n)$ bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in $mathrm{FO(COUNT)}$. From this result, by the well known inclusion $mathrm{TC}^0subseteqmathrm{LOGSPACE}$, it follows that DUAL belongs also to $mathrm{DSPACE}[log^2 n]$. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs $mathcal{G}$ and $mathcal{H}$, computes in quadratic logspace a transversal of $mathcal{G}$ missing in $mathcal{H}$.



rate research

Read More

Let $t$ be an integer such that $tgeq 2$. Let $K_{2,t}^{(3)}$ denote the triple system consisting of the $2t$ triples ${a,x_i,y_i}$, ${b,x_i,y_i}$ for $1 le i le t$, where the elements $a, b, x_1, x_2, ldots, x_t,$ $y_1, y_2, ldots, y_t$ are all distinct. Let $ex(n,K_{2,t}^{(3)})$ denote the maximum size of a triple system on $n$ elements that does not contain $K_{2,t}^{(3)}$. This function was studied by Mubayi and Verstraete, where the special case $t=2$ was a problem of ErdH{o}s that was studied by various authors. Mubayi and Verstraete proved that $ex(n,K_{2,t}^{(3)})<t^4binom{n}{2}$ and that for infinitely many $n$, $ex(n,K_{2,t}^{(3)})geq frac{2t-1}{3} binom{n}{2}$. These bounds together with a standard argument show that $g(t):=lim_{nto infty} ex(n,K_{2,t}^{(3)})/binom{n}{2}$ exists and that [frac{2t-1}{3}leq g(t)leq t^4.] Addressing the question of Mubayi and Verstraete on the growth rate of $g(t)$, we prove that as $t to infty$, [g(t) = Theta(t^{1+o(1)}).]
The Windows Scheduling Problem, also known as the Pinwheel Problem, is to schedule periodic jobs subject to their processing frequency demands. Instances are given as a set of jobs that have to be processed infinitely often such that the time interval between two consecutive executions of the same job j is no longer than the jobs given period $p_j$. The key contribution of this work is a new interpretation of the problem variant with exact periods, where the time interval between consecutive executions must be strictly $p_j$. We show that this version is equivalent to a natural combinatorial problem we call Partial Coding. Reductions in both directions can be realized in polynomial time, so that both hardness proofs and algorithms for Partial Coding transfer to Windows Scheduling. Applying this new perspective, we obtain a number of new results regarding the computational complexity of various Windows Scheduling Problem variants. We prove that even the case of one processor and unit-length jobs does not admit a pseudo-polynomial time algorithm unless SAT can be solved by a randomized method in expected quasi-polynomial time. This result also extends to the case of inexact periods, which answers a question that has remained open for more than two decades. Furthermore, we report an error found in a hardness proof previously given for the multi-machine case without machine migration, and we show that this variant reduces to the single-machine case. Finally, we prove that even with unit-length jobs the problem is co-NP-hard when jobs are allowed to migrate between machines.
Dawar and Wilsenach (ICALP 2020) introduce the model of symmetric arithmetic circuits and show an exponential separation between the sizes of symmetric circuits for computing the determinant and the permanent. The symmetry restriction is that the circuits which take a matrix input are unchanged by a permutation applied simultaneously to the rows and columns of the matrix. Under such restrictions we have polynomial-size circuits for computing the determinant but no subexponential size circuits for the permanent. Here, we consider a more stringent symmetry requirement, namely that the circuits are unchanged by arbitrary even permutations applied separately to rows and columns, and prove an exponential lower bound even for circuits computing the determinant. The result requires substantial new machinery. We develop a general framework for proving lower bounds for symmetric circuits with restricted symmetries, based on a new support theorem and new two-player restricted bijection games. These are applied to the determinant problem with a novel construction of matrices that are bi-adjacency matrices of graphs based on the CFI construction. Our general framework opens the way to exploring a variety of symmetry restrictions and studying trade-offs between symmetry and other resources used by arithmetic circuits.
In the $d$-Scattered Set problem we are asked to select at least $k$ vertices of a given graph, so that the distance between any pair is at least $d$. We study the problems (in-)approximability and offer improvements and extensions of known results for Independent Set, of which the problem is a generalization. Specifically, we show: - A lower bound of $Delta^{lfloor d/2rfloor-epsilon}$ on the approximation ratio of any polynomial-time algorithm for graphs of maximum degree $Delta$ and an improved upper bound of $O(Delta^{lfloor d/2rfloor})$ on the approximation ratio of any greedy scheme for this problem. - A polynomial-time $2sqrt{n}$-approximation for bipartite graphs and even values of $d$, that matches the known lower bound by considering the only remaining case. - A lower bound on the complexity of any $rho$-approximation algorithm of (roughly) $2^{frac{n^{1-epsilon}}{rho d}}$ for even $d$ and $2^{frac{n^{1-epsilon}}{rho(d+rho)}}$ for odd $d$ (under the randomized ETH), complemented by $rho$-approximation algorithms of running times that (almost) match these bounds.
181 - Joel Friedman 2017
We develop a notion of {em inner rank} as a tool for obtaining lower bounds on the rank of matrix multiplication tensors. We use it to give a short proof that the border rank (and therefore rank) of the tensor associated with $ntimes n$ matrix multiplication over an arbitrary field is at least $2n^2-n+1$. While inner rank does not provide improvements to currently known lower bounds, we argue that this notion merits further study.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا