Do you want to publish a course? Click here

Lower Bounds for Symmetric Circuits for the Determinant

206   0   0.0 ( 0 )
 Added by Gregory Wilsenach
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Dawar and Wilsenach (ICALP 2020) introduce the model of symmetric arithmetic circuits and show an exponential separation between the sizes of symmetric circuits for computing the determinant and the permanent. The symmetry restriction is that the circuits which take a matrix input are unchanged by a permutation applied simultaneously to the rows and columns of the matrix. Under such restrictions we have polynomial-size circuits for computing the determinant but no subexponential size circuits for the permanent. Here, we consider a more stringent symmetry requirement, namely that the circuits are unchanged by arbitrary even permutations applied separately to rows and columns, and prove an exponential lower bound even for circuits computing the determinant. The result requires substantial new machinery. We develop a general framework for proving lower bounds for symmetric circuits with restricted symmetries, based on a new support theorem and new two-player restricted bijection games. These are applied to the determinant problem with a novel construction of matrices that are bi-adjacency matrices of graphs based on the CFI construction. Our general framework opens the way to exploring a variety of symmetry restrictions and studying trade-offs between symmetry and other resources used by arithmetic circuits.



rate research

Read More

We introduce symmetric arithmetic circuits, i.e. arithmetic circuits with a natural symmetry restriction. In the context of circuits computing polynomials defined on a matrix of variables, such as the determinant or the permanent, the restriction amounts to requiring that the shape of the circuit is invariant under simultaneous row and column permutations of the matrix. We establish unconditional exponential lower bounds on the size of any symmetric circuit for computing the permanent. In contrast, we show that there are polynomial-size symmetric circuits for computing the determinant over fields of characteristic zero.
We show that every construction of one-time signature schemes from a random oracle achieves black-box security at most $2^{(1+o(1))q}$, where $q$ is the total number of oracle queries asked by the key generation, signing, and verification algorithms. That is, any such scheme can be broken with probability close to $1$ by a (computationally unbounded) adversary making $2^{(1+o(1))q}$ queries to the oracle. This is tight up to a constant factor in the number of queries, since a simple modification of Lamports one-time signatures (Lamport 79) achieves $2^{(0.812-o(1))q}$ black-box security using $q$ queries to the oracle. Our result extends (with a loss of a constant factor in the number of queries) also to the random permutation and ideal-cipher oracles. Since the symmetric primitives (e.g. block ciphers, hash functions, and message authentication codes) can be constructed by a constant number of queries to the mentioned oracles, as corollary we get lower bounds on the efficiency of signature schemes from symmetric primitives when the construction is black-box. This can be taken as evidence of an inherent efficiency gap between signature schemes and symmetric primitives.
We construct an explicit family of 3XOR instances which is hard for $O(sqrt{log n})$ levels of the Sum-of-Squares hierarchy. In contrast to earlier constructions, which involve a random component, our systems can be constructed explicitly in deterministic polynomial time. Our construction is based on the high-dimensional expanders devised by Lubotzky, Samuels and Vishne, known as LSV complexes or Ramanujan complexes, and our analysis is based on two notions of expansion for these complexes: cosystolic expansion, and a local isoperimetric inequality due to Gromov. Our construction offers an interesting contrast to the recent work of Alev, Jeronimo and the last author~(FOCS 2019). They showed that 3XOR instances in which the variables correspond to vertices in a high-dimensional expander are easy to solve. In contrast, in our instances the variables correspond to the edges of the complex.
We demonstrate a lower bound technique for linear decision lists, which are decision lists where the queries are arbitrary linear threshold functions. We use this technique to prove an explicit lower bound by showing that any linear decision list computing the function $MAJ circ XOR$ requires size $2^{0.18 n}$. This completely answers an open question of Tur{a}n and Vatan [FoCM97]. We also show that the spectral classes $PL_1, PL_infty$, and the polynomial threshold function classes $widehat{PT}_1, PT_1$, are incomparable to linear decision lists.
144 - William Kretschmer 2019
We prove a query complexity lower bound for $mathsf{QMA}$ protocols that solve approximate counting: estimating the size of a set given a membership oracle. This gives rise to an oracle $A$ such that $mathsf{SBP}^A otsubset mathsf{QMA}^A$, resolving an open problem of Aaronson [2]. Our proof uses the polynomial method to derive a lower bound for the $mathsf{SBQP}$ query complexity of the $mathsf{AND}$ of two approximate counting instances. We use Laurent polynomials as a tool in our proof, showing that the Laurent polynomial method can be useful even for problems involving ordinary polynomials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا