Do you want to publish a course? Click here

VERA and ALMA Observations of the H2O Supermaser Burst in Orion KL

124   0   0.0 ( 0 )
 Added by Tomoya Hirota
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The 22 GHz H2O maser in Orion KL has shown extraordinary burst events in 1979-1985 and 1998-1999, sometimes called supermaser. We have conducted monitoring observations of the supermaser in Orion KL using VERA, VLBI Exploration of Radio Astrometry, in the current third burst since 2011 March. Three flux maxima are detected in 2011 and 2012 with rising and falling timescales of 2-7 months. Time variations of the supermaser seem symmetric for all of the active phases. The maximum total flux density of 135000 Jy is observed in 2012 June while it is still one order of magnitude lower than those in previous bursts. The supermaser consists of two spatially different components at different velocities. They are elongated along a northwest-southeast direction perpendicular to the low-velocity outflow driven by Source I. Proper motions of the supermaser features with respect to Source I are measured toward west and southwest directions, almost parallel to the low-velocity outflow. The flux density and linewidth show an anti-correlation as expected for an unsaturated maser emission. The supermaser is located close to the methylformate (HCOOCH3) line and continuum emission peaks in the Orion Compact Ridge detected by ALMA. The broader velocity range of the weak HCOOCH3 emission at the supermaser position would be an evidence of a shock front. On the other hand, the 321 GHz H2O line is not detected at the position of the supermaser. It can be explained qualitatively by one of the theoretical H2O excitation models without extraordinary conditions. Our results support a scenario that the supermaser is excited in the dense gas interacting with the low-velocity outflow in the Compact Ridge. The extremely high flux density and its symmetric time variation for rising and falling phases could be explained by a beaming effect during the amplification process rather than changes in physical conditions.



rate research

Read More

We present observational results of the submillimeter H2O and SiO lines toward a candidate high-mass young stellar object Orion Source I using ALMA. The spatial structures of the high excitation lines at lower-state energies of >2500 K show compact structures consistent with the circumstellar disk and/or base of the northeast-southwest bipolar outflow with a 100 au scale. The highest excitation transition, the SiO (v=4) line at band 8, has the most compact structure. In contrast, lower-excitation transitions are more extended than 200 au tracing the outflow. Almost all the line show velocity gradients perpendicular to the outflow axis suggesting rotation motions of the circumstellar disk and outflow. While some of the detected lines show broad line profiles and spatially extended emission components indicative of thermal excitation, the strong H2O lines at 321 GHz, 474 GHz, and 658 GHz with brightness temperatures of >1000 K show clear signatures of maser action.
We present sensitive high angular resolution ($sim$ 0.1$$ -- 0.3$$) continuum ALMA (The Atacama Large Millimeter/Submillimeter Array) observations of the archetypal hot core located in Orion-KL. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149 -- 658 GHz). Apart of the well-know millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA 1-3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 to 1.56, and brightness temperatures between 100 to 200 K at 658 GHz suggesting that we are seeing moderate optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favours the hypothesis that the hot molecular core in Orion-KL core is heated externally.
We present the initial results of multi-epoch VLBI observations of the 22 GHz H2O masers in the Orion KL region with VERA (VLBI Exploration of Radio Astrometry). With the VERA dual-beam receiving system, we have carried out phase-referencing VLBI astrometry and successfully detected an annual parallax of Orion KL to be 2.29+/-0.10 mas, corresponding to the distance of 437+/-19 pc from the Sun. The distance to Orion KL is determined for the first time with the annual parallax method in these observations. Although this value is consistent with that of the previously reported, 480+/-80 pc, which is estimated from the statistical parallax method using proper motions and radial velocities of the H2O maser features, our new results provide the much more accurate value with an uncertainty of only 4%. In addition to the annual parallax, we have detected an absolute proper motion of the maser feature, suggesting an outflow motion powered by the radio source I along with the systematic motion of source I itself.
We report the detection of more than 48 velocity-resolved ground rotational state transitions of H2(16)O, H2(18)O, and H2(17)O - most for the first time - in both emission and absorption toward Orion KL using Herschel/HIFI. We show that a simple fit, constrained to match the known emission and absorption components along the line of sight, is in excellent agreement with the spectral profiles of all the water lines. Using the measured H2(18)O line fluxes, which are less affected by line opacity than their H2(16)O counterparts, and an escape probability method, the column densities of H2(18)O associated with each emission component are derived. We infer total water abundances of 7.4E-5, 1.0E-5, and 1.6E-5 for the plateau, hot core, and extended warm gas, respectively. In the case of the plateau, this value is consistent with previous measures of the Orion-KL water abundance as well as those of other molecular outflows. In the case of the hot core and extended warm gas, these values are somewhat higher than water abundances derived for other quiescent clouds, suggesting that these regions are likely experiencing enhanced water-ice sublimation from (and reduced freeze-out onto) grain surfaces due to the warmer dust in these sources.
287 - Luis A. Zapata 2012
In this {it Letter}, we present sensitive millimeter SiO (J=5-4; $ u$=0) line observations of the outflow arising from the enigmatic object Orion Source I made with the Atacama Large Millimeter/Submillimeter Array (ALMA). The observations reveal that at scales of a few thousand AU, the outflow has a marked butterfly morphology along a northeast-southwest axis. However, contrary to what is found in the SiO and H$_2$O maser observations at scales of tens of AU, the blueshifted radial velocities of the moving gas are found to the northwest, while the redshifted velocities are in the southeast. The ALMA observations are complemented with SiO (J=8-7; $ u$=0) maps (with a similar spatial resolution) obtained with the Submillimeter Array (SMA). These observations also show a similar morphology and velocity structure in this outflow. We discuss some possibilities to explain these differences at small and large scales across the flow.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا