Do you want to publish a course? Click here

Dependence of intrinsic rotation reversals on collisionality in MAST

270   0   0.0 ( 0 )
 Added by Jon Hillesheim
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Tokamak plasmas rotate even without external injection of momentum. A Doppler backscattering system installed at MAST has allowed this intrinsic rotation to be studied in Ohmic L-mode and H-mode plasmas, including the first observation of intrinsic rotation reversals in a spherical tokamak. Experimental results are compared to a novel 1D model, which captures the collisionality dependence of the radial transport of toroidal angular momentum due to the effect of neoclassical flows on turbulent fluctuations. The model is able to accurately reproduce the change in sign of core toroidal rotation, using experimental density and temperature profiles from shots with rotation reversals as inputs and no free parameters fit to experimental data.



rate research

Read More

Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a range of toroidal mode numbers over a wide region of low to medium collisionality discharges. The ELM energy loss and peak heat loads at the divertor targets have been reduced. The ELM mitigation phase is typically associated with a drop in plasma density and overall stored energy. In one particular scenario on MAST, by carefully adjusting the fuelling it has been possible to counteract the drop in density and to produce plasmas with mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in pedestal height and confined energy. While the applied resonant magnetic perturbation field can be a good indicator for the onset of ELM mitigation on MAST and AUG there are some cases where this is not the case and which clearly emphasise the need to take into account the plasma response to the applied perturbations. The plasma response calculations show that the increase in ELM frequency is correlated with the size of the edge peeling-tearing like response of the plasma and the distortions of the plasma boundary in the X-point region.
387 - A. Kirk , Yueqiang Liu , R. Martin 2013
The misalignment of field coils in tokamaks can lead to toroidal asymmetries in the magnetic field, which are known as intrinsic error fields. These error fields often lead to the formation of locked modes in the plasma, which limit the lowest density that is achievable. The intrinsic error fields on MAST have been determined by the direct measurement of the toroidal asymmetry of the fields from these coils and have been parameterised in terms of distortions to the coils. The error fields are corrected using error field correction coils, where the optimum correction is found by determining the current required to ensure that the discharge is furthest from the onset of a locked mode. These empirically derived corrections have been compared with the known coil distortions. In the vacuum approximation there is a factor of ~ 3 difference between the predicted and empirically determined correction. When the plasma response is included better agreement is obtained, but there are still some cases where the agreement is not good, which suggests that other effects such as the non-linear coupling of the error field to the plasma are important.
Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the low-field side of the plasma, therefore this paper focuses on light impurities where the impact of poloidal asymmetries on impurity transport is predicted to be negligible. A weak screening of carbon and nitrogen is found in the plasma core, whereas the helium density profile is peaked over the entire plasma radius.
Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show that the inverse gradient scale length of the ion temperature R/LTi (normalized to the major radius R) has its strongest local correlation with the rotational shear and the pitch angle of the magnetic field (or, equivalently, an inverse correlation with q/{epsilon}, the safety factor/the inverse aspect ratio). Furthermore, R/LTi is found to be inversely correlated with the gyro-Bohm-normalized local turbulent heat flux estimated from the density fluctuation level measured using a 2D Beam Emission Spectroscopy (BES) diagnostic. These results can be explained in terms of the conjecture that the turbulent system adjusts to keep R/LTi close to a certain critical value (marginal for the excitation of turbulence) determined by local equilibrium parameters (although not necessarily by linear stability).
82 - Yuejiang Shi 2016
Experiments of electron cyclotron resonance heating (ECH) power scan in KSTAR tokamak clearly demonstrate that both the cut-off density for non-local heat transport (NLT) and the threshold density for intrinsic rotation reversal can be determined by the collisionality. We demonstrate that NLT can be affected by ECH, and the intrinsic rotation direction follows the changes of NLT. The cut-off density of NLT and threshold density for rotation reversal can be significantly extended by ECH. The poloidal flow of turbulence in core plasma is in the electron and the ion diamagnetic direction in ECH plasmas and high density OH plasma, respectively. The auto-power spectra of density fluctuation are almost the same in the outer region for both ECH and OH plasmas. On the other hand, in the core region of ECH plasmas, the power spectra of the density fluctuations are broader than those of OH plasma. All these observations in macroscopic parameters and micro fluctuations suggest a possible link between the macro phenomena and the structural changes in micro-fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا