No Arabic abstract
Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show that the inverse gradient scale length of the ion temperature R/LTi (normalized to the major radius R) has its strongest local correlation with the rotational shear and the pitch angle of the magnetic field (or, equivalently, an inverse correlation with q/{epsilon}, the safety factor/the inverse aspect ratio). Furthermore, R/LTi is found to be inversely correlated with the gyro-Bohm-normalized local turbulent heat flux estimated from the density fluctuation level measured using a 2D Beam Emission Spectroscopy (BES) diagnostic. These results can be explained in terms of the conjecture that the turbulent system adjusts to keep R/LTi close to a certain critical value (marginal for the excitation of turbulence) determined by local equilibrium parameters (although not necessarily by linear stability).
Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the low-field side of the plasma, therefore this paper focuses on light impurities where the impact of poloidal asymmetries on impurity transport is predicted to be negligible. A weak screening of carbon and nitrogen is found in the plasma core, whereas the helium density profile is peaked over the entire plasma radius.
Nonlinear gyrokinetic simulations have been conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal E x B shear value for plasma confinement. Local maxima in the momentum fluxes are also observed, allowing for the possibility of bifurcations in the E x B shear. The sensitive dependence of heat flux on temperature gradient is relaxed for large flow shear values, with the critical temperature gradient increasing at lower flow shear values. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.
Recent efforts to include kinetic effects in fluid simulations of plasmas have been very promising. Concerning collisionless magnetic reconnection, it has been found before that damping of the pressure tensor to isotropy leads to good agreement with kinetic runs in certain scenarios. An accurate representation of kinetic effects in reconnection was achieved in a study by Wang et al. (Phys. Plasmas, volume 22, 2015, 012108) with a closure derived from earlier work by Hammett and Perkins (PRL, volume 64, 1990, 3019). Here, their approach is analyzed on the basis of heat flux data from a Vlasov simulation. As a result, we propose a new local closure in which heat flux is driven by temperature gradients. That way, a more realistic approximation of Landau damping in the collisionless regime is achieved. Previous issues are addressed and the agreement with kinetic simulations in different reconnection setups is improved significantly. To the authors knowledge, the new fluid model is the first to perform well in simulations of the coalescence of large magnetic islands.
The distribution of particles and power to plasma-facing components is of key importance in the design of next-generation fusion devices. Power and particle decay lengths have been measured in a number of MAST L-mode and H-mode discharges in order to determine their parametric dependencies, by fitting power and particle flux profiles measured by divertor Langmuir probes, to a convolution of an exponential decay and a Gaussian function. In all discharges analysed, it is found that exponential decay lengths mapped to the midplane are mostly dependent on separatrix electron density and plasma current (or parallel connection length). The widths of the convolved Gaussian functions have been used to derive an approximate diffusion coefficient, which is found to vary from 1m2/s to 7m2/s, and is systematically lower in H-mode compared with L-mode.
Local electron and ion heating characteristics during merging reconnection startup on the MAST spherical tokamak have been revealed for the first time using a 130 channel YAG-TS system and a new 32 chord ion Doppler tomography diagnostic. 2D local profile measurement of $T_e$, $n_e$ and $T_i$ detect highly localized electron heating at the X point and bulk ion heating downstream. For the push merging experiment under high guide field condition, thick layer of closed flux surface formed by reconnected field sustains the heating profile for more than electron and ion energy relaxation time $tau^E_{ei}sim4-10$ms, both heating profiles finally form triple peak structure at the X point and downstream. Toroidal guide field mostly contributes the formation of peaked electron heating profile at the X point. The localized heating increases with higher guide field, while bulk downstream ion heating is unaffected by the change in the guide field under MAST conditions ($B_t>3B_{rec}$).