Do you want to publish a course? Click here

Design and construction of a carbon fiber gondola for the SPIDER balloon-borne telescope

175   0   0.0 ( 0 )
 Added by Juan Diego Soler
 Publication date 2014
  fields Physics
and research's language is English
 Authors J. D. Soler




Ask ChatGPT about the research

We introduce the light-weight carbon fiber and aluminum gondola designed for the SPIDER balloon-borne telescope. SPIDER is designed to measure the polarization of the Cosmic Microwave Background radiation with unprecedented sensitivity and control of systematics in search of the imprint of inflation: a period of exponential expansion in the early Universe. The requirements of this balloon-borne instrument put tight constrains on the mass budget of the payload. The SPIDER gondola is designed to house the experiment and guarantee its operational and structural integrity during its balloon-borne flight, while using less than 10% of the total mass of the payload. We present a construction method for the gondola based on carbon fiber reinforced polymer tubes with aluminum inserts and aluminum multi-tube joints. We describe the validation of the model through Finite Element Analysis and mechanical tests.



rate research

Read More

We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescopes azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s$^2$, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.
X-ray polarimetry has seen a growing interest in recent years. Improvements in detector technology and focusing X-ray optics now enable sensitive astrophysical X-ray polarization measurements. These measurements will provide new insights into the processes at work in accreting black holes, the emission of X-rays from neutron stars and magnetars, and the structure of AGN jets. X-Calibur is a balloon-borne hard X-ray scattering polarimeter. An X-ray mirror with a focal length of 8 m focuses X-rays onto the detector, which consists of a plastic scattering element surrounded by Cadmium-Zinc-Telluride detectors, which absorb and record the scattered X-rays. Since X-rays preferentially scatter perpendicular to their polarization direction, the polarization properties of an X-ray beam can be inferred from the azimuthal distribution of scattered X-rays. A close alignment of the X-ray focal spot with the center of the detector is required in order to reduce systematic uncertainties and to maintain a high photon detection efficiency. This places stringent requirements on the mechanical and thermal stability of the telescope structure. During the flight on a stratospheric balloon, X-Calibur makes use of the Wallops Arc-Second Pointer (WASP) to point the telescope at astrophysical sources. In this paper, we describe the design, construction, and test of the telescope structure, as well as its performance during a 25-hour flight from Ft. Sumner, New Mexico. The carbon fiber-aluminum composite structure met the requirements set by X-Calibur and its design can easily be adapted for other types of experiments, such as X-ray imaging or spectroscopic telescopes.
We present the results of integration and characterization of the SPIDER instrument after the 2013 pre-flight campaign. SPIDER is a balloon-borne polarimeter designed to probe the primordial gravitational wave signal in the degree-scale $B$-mode polarization of the cosmic microwave background. With six independent telescopes housing over 2000 detectors in the 94 GHz and 150 GHz frequency bands, SPIDER will map 7.5% of the sky with a depth of 11 to 14 $mu$K$cdot$arcmin at each frequency, which is a factor of $sim$5 improvement over Planck. We discuss the integration of the pointing, cryogenic, electronics, and power sub-systems, as well as pre-flight characterization of the detectors and optical systems. SPIDER is well prepared for a December 2014 flight from Antarctica, and is expected to be limited by astrophysical foreground emission, and not instrumental sensitivity, over the survey region.
We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16$times$16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7$^{circ}$ FHWM Gaussian-shaped beams with $<$1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 $times$ 10$^{-17}$ W/$sqrt{mathrm{Hz}}$, consistent with the phonon noise prediction.
The E and B Experiment (EBEX) was a long-duration balloon-borne instrument designed to measure the polarization of the cosmic microwave background (CMB) radiation. EBEX was the first balloon-borne instrument to implement a kilo-pixel array of transition edge sensor (TES) bolometric detectors and the first CMB experiment to use the digital version of the frequency domain multiplexing system for readout of the TES array. The scan strategy relied on 40 s peak-to-peak constant velocity azimuthal scans. We discuss the unique demands on the design and operation of the payload that resulted from these new technologies and the scan strategy. We describe the solutions implemented including the development of a power system designed to provide a total of at least 2.3 kW, a cooling system to dissipate 590 W consumed by the detectors readout system, software to manage and handle the data of the kilo-pixel array, and specialized attitude reconstruction software. We present flight performance data showing faultless management of the TES array, adequate powering and cooling of the readout electronics, and constraint of attitude reconstruction errors such that the spurious B-modes they induced were less than 10% of CMB B-mode power spectrum with $r=0.05$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا