Do you want to publish a course? Click here

Statistics of Dark Matter Halos in the Excursion Set Peak Framework

95   0   0.0 ( 0 )
 Added by Andrea Lapi
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive approximated, yet very accurate analytical expressions for the abundance and clustering properties of dark matter halos in the excursion set peak framework; the latter relies on the standard excursion set approach, but also includes the effects of a realistic filtering of the density field, a mass-dependent threshold for collapse, and the prescription from peak theory that halos tend to form around density maxima. We find that our approximations work excellently for diverse power spectra, collapse thresholds and density filters. Moreover, when adopting a cold dark matter power spectra, a tophat filtering and a mass-dependent collapse threshold (supplemented with conceivable scatter), our approximated halo mass function and halo bias represent very well the outcomes of cosmological $N-$body simulations.



rate research

Read More

The excursion set model provides a convenient theoretical framework to derive dark matter halo abundances. This paper generalizes the model by introducing a more realistic merging and collapse process. A new parameter regulates the influence of the environment and thus the coherence (non-Markovianity) of the merging and the collapse of individual mass shells. The model mass function also includes the effects of an ellipsoidal collapse. Analytic approximations of the halo mass function are derived for scale-invariant power spectra with the slopes $n=0,-1,-2$. The $n=-2$ mass function can be compared with the results obtained from the `Hubble volume simulations. A significant detection of non-Markovian effects is found for an assumed accuracy of the simulated mass function of 10%.
New statistical properties of dark matter halos in Lagrangian space are presented. Tracing back the dark matter particles constituting bound halos resolved in a series of N-body simulations, we measure quantitatively the correlations of the proto-halos inertia tensors with the local tidal tensors and investigate how the correlation strength depends on the proto-halos sphericity, local density and filtering scale. It is shown that the majority of the proto-halos exhibit strong correlations between the two tensors provided that the tidal field is smoothed on the proto-halos mass scale. The correlation strength is found to increase as the proto-halos sphericity increases, as the proto-halos mass increases, and as the local density becomes close to the critical value, delta_{ec}. It is also found that those peculiar proto-halos which exhibit exceptionally weak correlations between the two tensors tend to acquire higher specific angular momentum in Eulerian space, which is consistent with the linear tidal torque theory. In the light of our results, it is intriguing to speculate a hypothesis that the low surface brightness galaxies observed at present epoch correspond to the peculiar proto-halos with extreme low-sphericity whose inertia tensors are weakly correlated with the local tidal tensors.
The merger and accretion probabilities of dark matter halos have so far only been calculated for an infinitesimal time interval. This means that a Monte-Carlo simulation with very small time steps is necessary to find the merger history of a parent halo. In this paper we use the random walk formalism to find the merger and accretion probabilities of halos for a finite time interval. Specifically, we find the number density of halos at an early redshift that will become part of a halo with a specified final mass at a later redshift, given that they underwent $n$ major mergers, $n=0,1,2,...$ . We reduce the problem into an integral equation which we then solve numerically. To ensure the consistency of our formalism we compare the results with Monte-Carlo simulations and find very good agreement. Though we have done our calculation assuming a flat barrier, the more general case can easily be handled using our method. This derivation of finite time merger and accretion probabilities can be used to make more efficient merger trees or implemented directly into analytical models of structure formation and evolution.
Dissipative dark matter self-interactions can affect halo evolution and change its structure. We perform a series of controlled N-body simulations to study impacts of the dissipative interactions on halo properties. The interplay between gravitational contraction and collisional dissipation can significantly speed up the onset of gravothermal collapse, resulting in a steep inner density profile. For reasonable choices of model parameters controlling the dissipation, the collapse timescale can be a factor of 10-100 shorter than that predicted in purely elastic self-interacting dark matter. The effect is maximized when energy loss per collision is comparable to characteristic kinetic energy of dark matter particles in the halo. Our simulations provide guidance for testing the dissipative nature of dark matter with astrophysical observations.
The excursion set approach provides a framework for predicting how the abundance of dark matter halos depends on the initial conditions. A key ingredient of this formalism comes from the physics of halo formation: the specification of a critical overdensity threshold (barrier) which protohalos must exceed if they are to form bound virialized halos at a later time. Another ingredient is statistical, as it requires the specification of the appropriate statistical ensemble over which to average when making predictions. The excursion set approach explicitly averages over all initial positions, thus implicitly assuming that the appropriate ensemble is that associated with randomly chosen positions in space, rather than special positions such as peaks of the initial density field. Since halos are known to collapse around special positions, it is not clear that the physical and statistical assumptions which underlie the excursion set approach are self-consistent. We argue that they are at least for low mass halos, and illustrate by comparing our excursion set predictions with numerical data from the DEUS simulations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا