Do you want to publish a course? Click here

Lagrangian Statistics of Dark Halos in a LCDM Cosmology

416   0   0.0 ( 0 )
 Added by Jounghun Lee
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

New statistical properties of dark matter halos in Lagrangian space are presented. Tracing back the dark matter particles constituting bound halos resolved in a series of N-body simulations, we measure quantitatively the correlations of the proto-halos inertia tensors with the local tidal tensors and investigate how the correlation strength depends on the proto-halos sphericity, local density and filtering scale. It is shown that the majority of the proto-halos exhibit strong correlations between the two tensors provided that the tidal field is smoothed on the proto-halos mass scale. The correlation strength is found to increase as the proto-halos sphericity increases, as the proto-halos mass increases, and as the local density becomes close to the critical value, delta_{ec}. It is also found that those peculiar proto-halos which exhibit exceptionally weak correlations between the two tensors tend to acquire higher specific angular momentum in Eulerian space, which is consistent with the linear tidal torque theory. In the light of our results, it is intriguing to speculate a hypothesis that the low surface brightness galaxies observed at present epoch correspond to the peculiar proto-halos with extreme low-sphericity whose inertia tensors are weakly correlated with the local tidal tensors.



rate research

Read More

122 - Maria E. De Rossi 2013
The mass assembly of a whole population of sub-Milky Way galaxies is studied by means of hydrodynamical simulations within the $Lambda$-CDM cosmology. Our results show that while dark halos assemble hierarchically, in stellar mass this trend is inverted in the sense that the smaller the galaxy, the later is its stellar mass assembly on average. Our star formation and supernovae feedback implementation in a multi-phase interstellar medium seems to play a key role on this process. However, the obtained downsizing trend is not yet as strong as observations show.
We derive approximated, yet very accurate analytical expressions for the abundance and clustering properties of dark matter halos in the excursion set peak framework; the latter relies on the standard excursion set approach, but also includes the effects of a realistic filtering of the density field, a mass-dependent threshold for collapse, and the prescription from peak theory that halos tend to form around density maxima. We find that our approximations work excellently for diverse power spectra, collapse thresholds and density filters. Moreover, when adopting a cold dark matter power spectra, a tophat filtering and a mass-dependent collapse threshold (supplemented with conceivable scatter), our approximated halo mass function and halo bias represent very well the outcomes of cosmological $N-$body simulations.
We study the concentration of dark matter halos and its evolution in N-body simulations of the standard LCDM cosmology. The results presented in this paper are based on 4 large N-body simulations with about 10 billion particles each: the Millennium-I and II, Bolshoi, and MultiDark simulations. The MultiDark (or BigBolshoi) simulation is introduced in this paper. This suite of simulations with high mass resolution over a large volume allows us to compute with unprecedented accuracy the concentration over a large range of scales (about six orders of magnitude in mass), which constitutes the state-of-the-art of our current knowledge on this basic property of dark matter halos in the LCDM cosmology. We find that there is consistency among the different simulation data sets. We confirm a novel feature for halo concentrations at high redshifts: a flattening and upturn with increasing mass. The concentration c(M,z) as a function of mass and the redshift and for different cosmological parameters shows a remarkably complex pattern. However, when expressed in terms of the linear rms fluctuation of the density field sigma(M,z), the halo concentration c(sigma) shows a nearly-universal simple U-shaped behaviour with a minimum at a well defined scale at sigma=0.71. Yet, some small dependences with redshift and cosmology still remain. At the high-mass end (sigma < 1) the median halo kinematic profiles show large signatures of infall and highly radial orbits. This c-sigma(M,z) relation can be accurately parametrized and provides an analytical model for the dependence of concentration on halo mass. When applied to galaxy clusters, our estimates of concentrations are substantially larger -- by a factor up to 1.5 -- than previous results from smaller simulations, and are in much better agreement with results of observations. (abridged)
225 - Matthieu Schaller 2014
We investigate the internal structure and density profiles of halos of mass $10^{10}-10^{14}~M_odot$ in the Evolution and Assembly of Galaxies and their Environment (EAGLE) simulations. These follow the formation of galaxies in a $Lambda$CDM Universe and include a treatment of the baryon physics thought to be relevant. The EAGLE simulations reproduce the observed present-day galaxy stellar mass function, as well as many other properties of the galaxy population as a function of time. We find significant differences between the masses of halos in the EAGLE simulations and in simulations that follow only the dark matter component. Nevertheless, halos are well described by the Navarro-Frenk-White (NFW) density profile at radii larger than ~5% of the virial radius but, closer to the centre, the presence of stars can produce cuspier profiles. Central enhancements in the total mass profile are most important in halos of mass $10^{12}-10^{13}M_odot$, where the stellar fraction peaks. Over the radial range where they are well resolved, the resulting galaxy rotation curves are in very good agreement with observational data for galaxies with stellar mass $M_*<5times10^{10}M_odot$. We present an empirical fitting function that describes the total mass profiles and show that its parameters are strongly correlated with halo mass.
Our knowledge about galaxy evolution comes from transforming observed galaxy properties at different redshifts to co-moving physical scales. This transformation depends on using a cosmological model. Here the effects of unintentional mixing of two different cosmological models on the size evolution of galaxies is studied. As a gedanken experiment, a galaxy of fixed proper size and luminosity is moved across different redshifts. The apparent size of this galaxy is then interpreted with a cosmological model presumed by the observer, which is different compared to the cosmology exhibited by the Universe. In such a case, a spurious size evolution of the galaxy is observed. A galaxy behaving according to the R_h=ct and Neumanns cosmology, when interpreted with the LCDM cosmological model, shows an increase in size by a factor of 1.1 and 1.3 from z=7.5 to z approx. 0, respectively. The apparent size of a galaxy in a static Euclidean cosmology, when interpreted in the LCDM model, shows a factor of 23.8 increase in size between z=7.5 to z approx. 0. This is in close agreement with the observational data with a size increase of a factor of 6.8 between z=3.2 to z approx. 0. Furthermore, using the apparent size data, it is shown that the difference between the derived proper sizes in R_h=ct, Neumanns and LCDM cosmological models are minimal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا