Do you want to publish a course? Click here

Inhomogeneous Cooling of the Rough Granular Gas in Two Dimensions

91   0   0.0 ( 0 )
 Added by Sudhir N Pathak
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the inhomogeneous clustered regime of a freely cooling granular gas of rough particles in two dimensions using large-scale event driven simulations and scaling arguments. During collisions, rough particles dissipate energy in both the normal and tangential directions of collision. In the inhomogeneous regime, translational kinetic energy and the rotational energy decay with time $t$ as power-laws $t^{-theta_T}$ and $t^{-theta_R}$. We numerically determine $theta_T approx 1$ and $theta_R approx 1.6$, independent of the coefficients of restitution. The inhomogeneous regime of the granular gas has been argued to be describable by the ballistic aggregation problem, where particles coalesce on contact. Using scaling arguments, we predict $theta_T=1$ and $theta_R=1$ for ballistic aggregation, $theta_R$ being different from that obtained for the rough granular gas. Simulations of ballistic aggregation with rotational degrees of freedom are consistent with these exponents.



rate research

Read More

The kinetic energy of a freely cooling granular gas decreases as a power law $t^{-theta}$ at large times $t$. Two theoretical conjectures exist for the exponent $theta$. One based on ballistic aggregation of compact spherical aggregates predicts $theta= 2d/(d+2)$ in $d$ dimensions. The other based on Burgers equation describing anisotropic, extended clusters predicts $theta=d/2$ when $2le d le 4$. We do extensive simulations in three dimensions to find that while $theta$ is as predicted by ballistic aggregation, the cluster statistics and velocity distribution differ from it. Thus, the freely cooling granular gas fits to neither the ballistic aggregation or a Burgers equation description.
We in this paper investigate the phase diagram associated with the BCS-BEC crossover of a three-component ultracold superfluid-Fermi-gas of different chemical-potentials and equal masses in two dimensions. The gap order parameter and number densities are found analytically by using the functional path-integral method. The balance of paring will be broken in the free space due to the unequal chemical-potentials. We obtain the same particle number-density and condensed fraction in the BCS superfluid phase as that in a recent paper (Phys. Rev. A 83, 033630), while the Sarma phase of coexistence of normal and superfluid Fermi gases is the characteristics of inhomogeneous system. The minimum ratio of BCS superfluid phase becomes 1/3 in the BCS limit corresponding to the zero-ratio in the two-component system in which the critical point of phase separation is {epsilon}B/{epsilon}F = 2 but becomes 3 in the three-component case.
We examine the impact of a solid sphere into a fine-grained granular bed. Using high-speed X-ray radiography we track both the motion of the sphere and local changes in the bed packing fraction. Varying the initial packing density as well as the ambient gas pressure, we find a complete reversal in the effect of interstitial gas on the impact response of the bed: The dynamic coupling between gas and grains allows for easier penetration in initially loose beds but impedes penetration in more densely packed beds. High-speed imaging of the local packing density shows that these seemingly incongruous effects have a common origin in the resistance to bed packing changes caused by interstitial air.
The transport coefficients for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) restitution are obtained in a unified framework as functions of the number of translational ($d_t$) and rotational ($d_r$) degrees of freedom. The derivation is carried out by means of the Chapman--Enskog method with a Sonine-like approximation in which, in contrast to previous approaches, the reference distribution function for angular velocities does not need to be specified. The well-known case of purely smooth $d$-dimensional particles is recovered by setting $d_t=d$ and formally taking the limit $d_rto 0$. In addition, previous results [G. M. Kremer, A. Santos, and V. Garzo, Phys. Rev. E 90, 022205 (2014)] for hard spheres are reobtained by taking $d_t=d_r=3$, while novel results for hard-disk gases are derived with the choice $d_t=2$, $d_r=1$. The singular quasismooth limit ($betato -1$) and the conservative Pidducks gas ($alpha=beta=1$) are also obtained and discussed.
Conditions for the stability under linear perturbations around the homogeneous cooling state are studied for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) restitution. After a formally exact linear stability analysis of the Navier--Stokes--Fourier hydrodynamic equations in terms of the translational ($d_t$) and rotational ($d_r$) degrees of freedom, the transport coefficients derived in the companion paper [A. Megias and A. Santos, Hydrodynamics of granular gases of inelastic and rough hard disks or spheres. I. Transport coefficients, Phys. Rev. E 104, 034901 (2021)] are employed. Known results for hard spheres [V. Garzo, A. Santos, and G. M. Kremer, Phys. Rev. E 97, 052901 (2018)] are recovered by setting $d_t=d_r=3$, while novel results for hard disks ($d_t=2$, $d_r=1$) are obtained. In the latter case, a high-inelasticity peculiar region in the $(alpha,beta)$ parameter space is found, inside which the critical wave number associated with the longitudinal modes diverges. Comparison with event-driven molecular dynamics simulations for dilute systems of hard disks at $alpha=0.2$ shows that this theoretical region of absolute instability may be an artifact of the extrapolation to high inelasticity of the approximations made in the derivation of the transport coefficients, although it signals a shrinking of the conditions for stability. In the case of moderate inelasticity ($alpha=0.7$), however, a good agreement between the theoretical predictions and the simulation results is found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا