Do you want to publish a course? Click here

Social Game for Building Energy Efficiency: Utility Learning, Simulation, and Analysis

120   0   0.0 ( 0 )
 Added by Lillian Ratliff
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

We describe a social game that we designed for encouraging energy efficient behavior amongst building occupants with the aim of reducing overall energy consumption in the building. Occupants vote for their desired lighting level and win points which are used in a lottery based on how far their vote is from the maximum setting. We assume that the occupants are utility maximizers and that their utility functions capture the tradeoff between winning points and their comfort level. We model the occupants as non-cooperative agents in a continuous game and we characterize their play using the Nash equilibrium concept. Using occupant voting data, we parameterize their utility functions and use a convex optimization problem to estimate the parameters. We simulate the game defined by the estimated utility functions and show that the estimated model for occupant behavior is a good predictor of their actual behavior. In addition, we show that due to the social game, there is a significant reduction in energy consumption.



rate research

Read More

In this paper we propose two novel coalitional game theory based optimization methods for minimizing the cost of electricity consumed by households from a smart community. Some households in the community may own renewable energy systems (RESs) conjoined with energy storing systems (ESSs). Some other residences own ESSs only, while the remaining households are simple energy consumers. We first propose a coalitional cost optimization method in which RESs and ESSs owners exchange energy and share their renewable energy and storage spaces. We show that by participating in the proposed game these households may considerably reduce their costs in comparison to performing individual cost optimization. We further propose another coalitional optimization model in which RESs and ESSs owning households not only share their resources, but also sell energy to simple energy consuming households. We show that through this energy trade the RESs and ESSs owners can further reduce their costs, while the simple energy consumers also gain cost savings. The monetary revenues gained by the coalition are distributed among its members according to the Shapley value. Simulation examples show that the proposed coalitional optimization methods may reduce the electricity costs for the RESs and ESSs owning households by 20%, while the sole energy consumers may reduce their costs by 5%.
Evolutionary dynamics in finite populations is known to fixate eventually in the absence of mutation. We here show that a similar phenomenon can be found in stochastic game dynamical batch learning, and investigate fixation in learning processes in a simple 2x2 game, for two-player games with cyclic interaction, and in the context of the best-shot network game. The analogues of finite populations in evolution are here finite batches of observations between strategy updates. We study when and how such fixation can occur, and present results on the average time-to-fixation from numerical simulations. Simple cases are also amenable to analytical approaches and we provide estimates of the behaviour of so-called escape times as a function of the batch size. The differences and similarities with escape and fixation in evolutionary dynamics are discussed.
In this paper, a nonlinear revision protocol is proposed and embedded into the traffic evolution equation of the classical proportional-switch adjustment process (PAP), developing the present nonlinear pairwise swapping dynamics (NPSD) to describe the selfish rerouting evolutionary game. It is demonstrated that i) NPSD and PAP require the same amount of network information acquisition in the route-swaps, ii) NPSD is able to prevent the over-swapping deficiency under a plausible behavior description; iii) NPSD can maintain the solution invariance, which makes the trial and error process to identify a feasible step-length in a NPSD-based swapping algorithm is unnecessary, and iv) NPSD is a rational behavior swapping process and the continuous-time NPSD is globally convergent. Using the day-to-day NPSD, a numerical example is conducted to explore the effects of the reaction sensitivity on traffic evolution and characterize the convergence of discrete-time NPSD.
This paper studies social cooperation backed peer-to-peer energy trading technique by which prosumers can decide how they can use their batteries opportunistically for participating in the peer-to-peer trading. The objective is to achieve a solution in which the ultimate beneficiaries are the prosumers, i.e., a prosumer-centric solution. To do so, a coalition formation game is designed, which enables a prosumer to compare its benefit of participating in the peer-to-peer trading with and without using its battery and thus, allows the prosumer to form suitable social coalition groups with other similar prosumers in the network for conducting peer-to-peer trading. The properties of the formed coalitions are studied, and it is shown that 1) the coalition structure that stems from the social cooperation between participating prosumers at each time slot is both stable and optimal, and 2) the outcomes of the proposed peer- to-peer trading scheme is prosumer-centric. Case studies are conducted based on real household energy usage and solar generation data to highlight how the proposed scheme can benefit prosumers through exhibiting prosumer-centric properties.
Concave Utility Reinforcement Learning (CURL) extends RL from linear to concave utilities in the occupancy measure induced by the agents policy. This encompasses not only RL but also imitation learning and exploration, among others. Yet, this more general paradigm invalidates the classical Bellman equations, and calls for new algorithms. Mean-field Games (MFGs) are a continuous approximation of many-agent RL. They consider the limit case of a continuous distribution of identical agents, anonymous with symmetric interests, and reduce the problem to the study of a single representative agent in interaction with the full population. Our core contribution consists in showing that CURL is a subclass of MFGs. We think this important to bridge together both communities. It also allows to shed light on aspects of both fields: we show the equivalence between concavity in CURL and monotonicity in the associated MFG, between optimality conditions in CURL and Nash equilibrium in MFG, or that Fictitious Play (FP) for this class of MFGs is simply Frank-Wolfe, bringing the first convergence rate for discrete-time FP for MFGs. We also experimentally demonstrate that, using algorithms recently introduced for solving MFGs, we can address the CURL problem more efficiently.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا