Do you want to publish a course? Click here

Hausdorff dimension in graph matchbox manifolds

185   0   0.0 ( 0 )
 Added by Olga Lukina
 Publication date 2014
  fields
and research's language is English
 Authors Olga Lukina




Ask ChatGPT about the research

In this paper, we study the Hausdorff and the box dimensions of closed invariant subsets of the space of pointed trees, equipped with a pseudogroup action. This pseudogroup dynamical system can be regarded as a generalization of a shift space. We show that the Hausdorff dimension of the space of pointed trees is infinite, and the union of closed invariant subsets with dense orbit and non-equal Hausdorff and box dimensions is dense in the space of pointed trees. We apply our results to the problem of embedding laminations into differentiable foliations of smooth manifolds. To admit such an embedding, a lamination must satisfy at least the following two conditions: first, it must admit a metric and a foliated atlas, such that the generators of the holonomy pseudogroup, associated to the atlas, are bi-Lipschitz maps relative to the metric. Second, it must admit an embedding into a manifold, which is a bi-Lipschitz map. A suspension of the pseudogroup action on the space of pointed graphs gives an example of a lamination where the first condition is satisfied, and the second one is not satisfied, with Hausdorff dimension of the space of pointed trees being the obstruction to the existence of a bi-Lipschitz embedding.



rate research

Read More

In this work, we develop shape expansions of minimal matchbox manifolds without holonomy, in terms of branched manifolds formed from their leaves. Our approach is based on the method of coding the holonomy groups for the foliated spaces, to define leafwise regions which are transversely stable and are adapted to the foliation dynamics. Approximations are obtained by collapsing appropriately chosen neighborhoods onto these regions along a transverse Cantor foliation. The existence of the transverse Cantor foliation allows us to generalize standard techniques known for Euclidean and fibered cases to arbitrary matchbox manifolds with Riemannian leaf geometry and without holonomy. The transverse Cantor foliations used here are constructed by purely intrinsic and topological means, as we do not assume that our matchbox manifolds are embedded into a smooth foliated manifold, or a smooth manifold.
A matchbox manifold is a foliated space with totally disconnected transversals, and an equicontinuous matchbox manifold is the generalization of Riemannian foliations for smooth manifolds in this context. In this paper, we develop the Molino theory for all equicontinuous matchbox manifolds. Our work extends the Molino theory developed in the work of Alvarez Lopez and Moreira Galicia which required the hypothesis that the holonomy actions for these spaces satisfy the strong quasi-analyticity condition. The methods of this paper are based on the authors previous works on the structure of weak solenoids, and provide many new properties of the Molino theory for the case of totally disconnected transversals, and examples to illustrate these properties. In particular, we show that the Molino space need not be uniquely well-defined, unless the global holonomy dynamical system is tame, a notion defined in this work. We show that examples in the literature for the theory of weak solenoids provide examples for which the strong quasi-analytic condition fails. Of particular interest is a new class of examples of equicontinuous minimal Cantor actions by finitely generated groups, whose construction relies on a result of Lubotzky. These examples have non-trivial Molino sequences, and other interesting properties.
We prove that the Hausdorff dimension of the set of three-period orbits in classical billiards is at most one. Moreover, if the set of three-period orbits has Hausdorff dimension one, then it has a tangent line at almost every point.
180 - Nuno Luzia 2020
We compute the Hausdorff dimension of limit sets generated by 3-dimensional self-affine mappings with diagonal matrices of the form A_{ijk}=Diag(a_{ijk}, b_{ij}, c_{i}), where 0<a_{ijk}le b_{ij}le c_i<1. By doing so we show that the variational principle for the dimension holds for this class.
As a model to provide a hands-on, elementary understanding of chaotic dynamics in dimension 3, we introduce a $C^2$-open set of diffeomorphisms of whose cross sections are Cantor sets; the intersection of the unstable and stable sets contains a fractal set of Hausdorff dimension nearly $1$. Our proof employs the thicknesses of Cantor sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا