Do you want to publish a course? Click here

Multiphoton resonances for all-optical quantum logic with multiple cavities

436   0   0.0 ( 0 )
 Added by B. M. Garraway
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop a theory for the interaction of multi-level atoms with multi-mode cavities yielding cavity-enhanced multi-photon resonances. The locations of the resonances are predicted from the use of effective two- and three-level Hamiltonians. As an application we show that quantum gates can be realised when photonic qubits are encoded on the cavity modes in arrangements where ancilla atoms transit the cavity. The fidelity of operations is increased by conditional measurements on the atom and by the use of a selected, dual-rail, Hilbert space. A universal set of gates is proposed, including the Fredkin gate and iSWAP operation; the system seems promising for scalability.



rate research

Read More

We propose a tunable nonlinear interaction for the implementation of quantum logic operations on pairs of superconducting resonators, where the two-resonator interaction is mediated by a transmon quantum bit (qubit). This interaction is characterized by a high on-to-off coupling ratio and allows for fast qubit-type and $d$-level system (qudit)-type operations for quantum information processing with multiphoton cavity states. We present analytical and numerical calculations showing that these operations can be performed with practically unit fidelity in absence of any dissipative phenomena, whereas physical two-photon two-resonator operations can be realized with a fidelity of 99.9% in presence of qubit and resonator decoherence. The resonator-qubit-resonator system proposed in this Letter can be implemented using available planar or three-dimensional microwave technology.
To take existing quantum optical experiments and devices into more practical regimes requires the construction of robust, solid-state implementations. In particular, to observe the strong-coupling regime of atom-photon interactions requires very small cavities and large quality factors. Here we show that the slot-waveguide geometry recently introduced for photonic applications is also promising for quantum optical applications in the visible regime. We study diamond- and GaP-based slot-waveguide cavities (SWCs) compatible with diamond colour centres e.g. nitrogen-vacancy (NV) defect, and show that one can achieve increased single-photon Rabi frequencies of order O(10^11) Hz in ultra-small cavity modal volumes, nearly 2 orders of magnitude smaller than previously studied diamond-based photonic crystal cavities.
We address the concept of direct multiphoton multiple ionization in atoms exposed to intense, short wavelength radiation and explore the conditions under which such processes dominate over the sequential. Their contribution is shown to be quite robust, even under intensity fluctuations and interaction volume integration, and reasonable agreement with experimental data is also found.
Single photons are a vital resource for optical quantum information processing. Efficient and deterministic single photon sources do not yet exist, however. To date, experimental demonstrations of quantum processing primitives have been implemented using non-deterministic sources combined with heralding and/or postselection. Unfortunately, even for eight photons, the data rates are already so low as to make most experiments impracticable. It is well known that quantum memories, capable of storing photons until they are needed, are a potential solution to this `scaling catastrophe. Here, we analyze in detail the benefits of quantum memories for producing multiphoton states, showing how the production rates can be enhanced by many orders of magnitude. We identify the quantity $eta B$ as the most important figure of merit in this connection, where $eta$ and $B$ are the efficiency and time-bandwidth product of the memories, respectively.
Quantum simulations are becoming an essential tool for studying complex phenomena, e.g. quantum topology, quantum information transfer, and relativistic wave equations, beyond the limitations of analytical computations and experimental observations. To date, the primary resources used in proof-of-principle experiments are collections of qubits, coherent states or multiple single-particle Fock states. Here we show the first quantum simulation performed using genuine higher-order Fock states, with two or more indistinguishable particles occupying the same bosonic mode. This was implemented by interfering pairs of Fock states with up to five photons on an interferometer, and measuring the output states with photon-number-resolving detectors. Already this resource-efficient demonstration reveals new topological matter, simulates non-linear systems and elucidates a perfect quantum transfer mechanism which can be used to transport Majorana fermions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا