No Arabic abstract
We have characterized the pulsation properties of 164 candidate RR Lyrae variables (RRLs) and 55 candidate Anomalous and/or short-period Cepheids in Leo I dwarf spheroidal galaxy. On the basis of its RRLs Leo I is confirmed to be an Oosterhoff-intermediate type galaxy, like several other dwarfs. We show that in their pulsation properties, the RRLs representing the oldest stellar population in the galaxy are not significantly different from those of five other nearby, isolated dwarf spheroidal galaxies. A similar result is obtained when comparing them to RR Lyrae stars in recently discovered ultra-faint dwarf galaxies. We are able to compare the period distributions and period-amplitude relations for a statistically significant sample of ab type RR Lyrae stars in dwarf galaxies (~1300stars) with those in the Galactic halo field (~14,000stars) and globular clusters (~1000stars). Field RRLs show a significant change in their period distribution when moving from the inner (dG<14 kpc) to the outer (dG>14kpc) halo regions. This suggests that the halo formed from (at least) two dissimilar progenitors or types of progenitor. Considered together, the RRLs in classical dwarf spheroidal and ultra-faint dwarf galaxies-as observed today-do not appear to follow the well defined pulsation properties shown by those in either the inner or the outer Galactic halo, nor do they have the same properties as RRLs in globular clusters. In particular, the samples of fundamental-mode RRLs in dwarfs seem to lack High Amplitudes and Short Periods (HASP:AV>1.0mag and P <0.48d) when compared with those observed in the Galactic halo field and globular clusters. The observed properties of RRLs do not support the idea that currently existing classical dwarf spheroidal and ultra-faint dwarf galaxies are surviving representative examples of the original building blocks of the Galactic halo.
We report the discovery of two Mira variable stars (Miras) toward the Sextans dwarf spheroidal (dSph) galaxy. We performed optical long-term monitoring observations for two red stars in the Sextans dSph. The light curves of both stars in the $I_{rm c}$ band show large-amplitude (3.7 and 0.9 mag) and long-period ($326pm 15$ and $122pm 5$ days) variations, suggesting that they are Miras. We combine our own infrared data with previously published data to estimate the mean infrared magnitudes. The distances obtained from the period-luminosity relation of the Miras ($75.3^{+12.8}_{-10.9}$ and $79.8^{+11.5}_{-9.9}$ kpc, respectively), together with the radial velocities available, support memberships of the Sextans dSph ($90.0pm 10.0$ kpc). These are the first Miras found in a stellar system with a metallicity as low as ${rm [Fe/H]sim -1.9}$, than any other known system with Miras.
We present B,V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.2) of Andromedas dwarf spheroidal companions, that we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23x 23 area centered on And XIX and present the deepest color magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V~26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which, however, extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and 3 of the ACs are located within And XIXs half light radius. The average period of the fundamental mode RR Lyrae stars (<Pab> = 0.62 d, sigma= 0.03 d) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermediate system. From the average luminosity of the RR Lyrae stars (<V (RR)> = 25.34 mag, sigma= 0.10 mag) we determine a distance modulus of (m-M)$_0$=$24.52pm0.23$ mag in a scale where the distance to the Large Magellanic Cloud (LMC) is $18.5pm0.1$ mag. The ACs follow a well defined Period-Wesenheit (PW) relation that appears to be in very good agreement with the PW relationship defined by the ACs in the LMC.
A large extension of the Sextans dwarf spheroidal galaxy, 7 sq degrees, has been surveyed for variable stars using the Dark Energy Camera at the Blanco Telescope in Cerro Tololo Inter-American Observatory, Chile. We report 7 Anomalous Cepheids, 199 RR Lyrae stars and 16 dwarf Cepheids in the field. This is only the fifth extra-galactic systems in which dwarf Cepheids have been systematically searched. Henceforth, the new stars increase the census of stars coming from different environments that can be used to asses the advantages and limitations of using dwarf Cepheids as standard candles in populations for which the metallicity is not necessarily known. The dwarf Cepheids found in Sextans have a mean period of 0.066 days, and a mean $g$ amplitude of 0.87 mags. They are located below the horizontal branch spanning a range of 0.8 mag, between $21.9 < g < 22.7$. The number of dwarf Cepheids in Sextans is low compared with other galaxies such as Carina, which have a strong intermediate-age population. On the other hand, the number and ratio of RR Lyrae stars to dwarf Cepheids is quite similar to Sculptor, a galaxy which, as Sextans, is dominated by an old stellar population. The dwarf Cepheid stars found in Sextans follow a well constrained Period-Luminosity relationship with an rms=0.05 mag in the $g$ band, which was set up by anchoring to the distance modulus given by the RR Lyrae stars. Although the majority of the variable stars in Sextans are located toward the center of the galaxy, we have found 2 RR Lyrae stars and 1 Anomalous Cepheid in the outskirts of the galaxy, which may be extra-tidal stars and suggest this galaxy may be undergoing tidal destruction. These possible extra-tidal variable stars share the same proper motions as Sextans, as seen by recent Gaia measurements.
The aim of this work is to find a progenitor for Canes Venatici I (CVn I), under the assumption that it is a dark matter free object that is undergoing tidal disruption. With a simple point mass integrator, we searched for an orbit for this galaxy using its current position, position angle, and radial velocity in the sky as constraints. The orbit that gives the best results has the pair of proper motions $mu_alpha$ = -0.099 mas yr$^{-1}$ and $mu_delta$ = -0.147 mas yr$^{-1}$, that is an apogalactic distance of 242.79 kpc and a perigalactic distance of 20.01 kpc. Using a dark matter free progenitor that undergoes tidal disruption, the best-fitting model matches the final mass, surface brightness, effective radius, and velocity dispersion of CVn I simultaneously. This model has an initial Plummer mass of 2.47 x $10^7$ M$_odot$ and a Plummer radius of 653 pc, producing a remnant after 10 Gyr with a final mass of 2.45 x 10$^5$ M$_odot$, a central surface brightness of 26.9 mag arcsec$^{-2}$, an effective radius of 545.7 pc, and a velocity dispersion with the value 7.58 km s$^{-1}$. Furthermore, it is matching the position angle and ellipticity of the projected object in the sky.
We explore how well crowded field point-source photometry can be accomplished with SDSS data: We present a photometric pipeline based on DoPhot, and tuned for analyzing crowded-field images from the SDSS. Using Monte Carlo simulations we show that the completeness of source extraction is above 80% to i < 21 (AB) and a stellar surface density of about 200 sq.amin. Hence, a specialized data pipeline can efficiently be used for e.g. nearby resolved galaxies in SDSS images, where the standard SDSS photometric package Photo, when applied in normal survey mode, gives poor results. We apply our pipeline to an area of about 3.55sq.deg. around the dwarf spheroidal galaxy (dSph) Leo I, and construct a high S/N star-count map of Leo I via an optimized filter in color-magnitude space (g,r,i). Although the radial surface-density profile of the dwarf deviates from the best fit empirical King model towards outer radii, we find no evidence for tidal debris out to a stellar surface-density of 4*10^(-3) of the central value. We determine the total luminosity of Leo I, and model its mass using the spherical and isotropic Jeans equation. Assuming that mass follows light we constrain a lower limit of the total mass of the dSph to be (1.7+/-0.2)*10^7 Msol. Contrary, if the mass in Leo I is dominated by a constant density dark-matter (DM) halo, then the mass within the central 12 is (2+/-0.6)*10^8 Msol. This leads to a mass-to-light ratio of >>6 (Ic_sol), and possibly >75 if the DM halo dominates the mass and extends further out than 12. In summary, our results show that Leo I is a symmetric, relaxed and bound system; this supports the idea that Leo I is a dark-matter dominated system.