Do you want to publish a course? Click here

Dwarf spheroidal satellites of M31: I. Variable stars and stellar populations in Andromeda XIX

287   0   0.0 ( 0 )
 Added by Felice Cusano
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present B,V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.2) of Andromedas dwarf spheroidal companions, that we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23x 23 area centered on And XIX and present the deepest color magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V~26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which, however, extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and 3 of the ACs are located within And XIXs half light radius. The average period of the fundamental mode RR Lyrae stars (<Pab> = 0.62 d, sigma= 0.03 d) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermediate system. From the average luminosity of the RR Lyrae stars (<V (RR)> = 25.34 mag, sigma= 0.10 mag) we determine a distance modulus of (m-M)$_0$=$24.52pm0.23$ mag in a scale where the distance to the Large Magellanic Cloud (LMC) is $18.5pm0.1$ mag. The ACs follow a well defined Period-Wesenheit (PW) relation that appears to be in very good agreement with the PW relationship defined by the ACs in the LMC.



rate research

Read More

B and V time-series photometry of the M31 dwarf spheroidal satellite Andromeda XXI (And XXI) was obtained with the Large Binocular Cameras at the Large Binocular Telescope. We have identified 50 variables in And XXI, of which 41 are RR Lyrae stars (37 fundamental-mode RRab, and 4 first-overtone RRc, pulsators) and 9 are Anomalous Cepheids (ACs). The average period of the RRab stars (<Pab> = 0.64 days) and the period-amplitude diagram place And~XXI in the class of Oosterhoff II - Oosterhoff-Intermediate objects. From the average luminosity of the RR Lyrae stars we derived the galaxy distance modulus of (m-M)$_0$=$24.40pm0.17$ mag, which is smaller than previous literature estimates, although still consistent with them within 1 $sigma$. The galaxy color-magnitude diagram shows evidence for the presence of three different stellar generations in And~XXI: 1) an old ($sim$ 12 Gyr) and metal poor ([Fe/H]=$-$1.7 dex) component traced by the RR Lyrae stars; 2) a slightly younger (10-6 Gyr) and more metal rich ([Fe/H]=$-$1.5 dex) component populating the red horizontal branch, and 3) a young age ($sim$ 1 Gyr) component with same metallicity, that produced the ACs. Finally, we provide hints that And~XXI could be the result of a minor merging event between two dwarf galaxies.
Using archival imaging from the Wide Field Planetary Camera 2 aboard the Hubble Space Telescope, we investigate the stellar populations of the Local Group dwarf spheroidal Andromeda V - a companion satellite galaxy of M31. The color-magnitude diagram (CMD) extends from above the first ascent red giant branch (RGB) tip to approximately one magnitude below the horizontal branch (HB). The steep well-defined RGB is indicative of a metal-poor system while the HB is populated predominantly redward of the RR Lyrae instability strip. Utilizing Galactic globular cluster fiducial sequences as a reference, we calculate a mean metallicity of [Fe/H] = -2.20 +/- 0.15 and a distance of (m-M)0 = 24.57 +/- 0.04 after adopting a reddening of E(B-V) = 0.16. This metal abundance places And V squarely in the absolute magnitude - metallicity diagram for dwarf spheroidal galaxies. In addition, if we attribute the entire error-corrected color spread of the RGB stars to an abundance spread, we estimate a range of ~0.5 dex in the metallicities of And V stars. Our analysis of the variable star population of And V reveals the presence of 28 potential variables. Of these, at least 10 are almost certainly RR Lyrae stars based on their time sequence photometry.
We present a census of variable stars in six M31 dwarf spheroidal satellites observed with the Hubble Space Telescope. We detect 870 RR Lyrae (RRL) stars in the fields of And I (296), II (251), III (111), XV (117), XVI (8), XXVIII (87). We also detect a total of 15 Anomalous Cepheids, three Eclipsing Binaries, and seven field RRL stars compatible with being members of the M31 halo or the Giant Stellar Stream. We derive robust and homogeneous distances to the six galaxies using different methods based on the properties of the RRL stars. Working with the up-to-date set of Period-Wesenheit ($I$, $B$ - $I$) relations published by Marconi et al., we obtain distance moduli of $mu_0$ = [24.49, 24.16, 24.36, 24.42, 23.70, 24.43] mag (respectively), with systematic uncertainties of 0.08 mag and statistical uncertainties $<$ 0.11 mag. We have considered an enlarged sample of sixteen M31 satellites with published variability studies, and compared their pulsational observables (e.g., periods, amplitudes), with those of fifteen Milky Way satellites for which similar data are available. The properties of the (strictly old) RRL in both satellite systems do not show any significant difference. In particular, we found a strikingly similar correlation between the mean period distribution of the fundamental RRL pulsators (RRab) and the mean metallicities of the galaxies. This indicates that the old RRL progenitors were similar at the early stage in the two environments, suggesting very similar characteristics for the earliest stages of evolution of both satellite systems.
We present B and V time series photometry of the M31 satellite galaxy Andromeda XXVII (And XXVII) that we observed with the Large Binocular Cameras of the Large Binocular Telescope. In the field of And XXVII we have discovered a total of 90 variables: 89 RR Lyrae stars and 1 Anomalous Cepheid. The average period of the fundamental mode RR Lyrae stars (RRab) $langle$P$_{rm ab}rangle$=0.59 d ($sigma$=0.05 d) and the period-amplitude diagram place And XXVII in the class of Oosterhoff I/Intermediate objects. Combining information from the color-magnitude diagram (CMD) and the variable stars we find evidence for a single old and metal poor stellar population with [Fe/H]$sim -1.8$ dex and t$sim$13 Gyr in And XXVII. The spatial distribution of RR Lyrae and red giant branch (RGB) stars gives clear indication that And XXVII is a completely disrupted system. This is also supported by the spread observed along the line of sight in the distance to the RR Lyrae stars. The highest concentration of RGB and RR Lyrae stars is found in a circular area of 4 arcmin in radius, centered about 0.2 degrees in south-east direction from Richardson et al. (2011) center coordinates of And XXVII. The CMD of this region is well defined with a prominent RGB and 15 RR Lyrae stars (out of the 18 found in the region) tracing a very tight horizontal branch at $langle V(RR) rangle$ = 25.24 mag $sigma$= 0.06 mag (average over 15 stars). We show that And XXVII well proposes as a candidate building block of the M31 halo.
We have characterized the pulsation properties of 164 candidate RR Lyrae variables (RRLs) and 55 candidate Anomalous and/or short-period Cepheids in Leo I dwarf spheroidal galaxy. On the basis of its RRLs Leo I is confirmed to be an Oosterhoff-intermediate type galaxy, like several other dwarfs. We show that in their pulsation properties, the RRLs representing the oldest stellar population in the galaxy are not significantly different from those of five other nearby, isolated dwarf spheroidal galaxies. A similar result is obtained when comparing them to RR Lyrae stars in recently discovered ultra-faint dwarf galaxies. We are able to compare the period distributions and period-amplitude relations for a statistically significant sample of ab type RR Lyrae stars in dwarf galaxies (~1300stars) with those in the Galactic halo field (~14,000stars) and globular clusters (~1000stars). Field RRLs show a significant change in their period distribution when moving from the inner (dG<14 kpc) to the outer (dG>14kpc) halo regions. This suggests that the halo formed from (at least) two dissimilar progenitors or types of progenitor. Considered together, the RRLs in classical dwarf spheroidal and ultra-faint dwarf galaxies-as observed today-do not appear to follow the well defined pulsation properties shown by those in either the inner or the outer Galactic halo, nor do they have the same properties as RRLs in globular clusters. In particular, the samples of fundamental-mode RRLs in dwarfs seem to lack High Amplitudes and Short Periods (HASP:AV>1.0mag and P <0.48d) when compared with those observed in the Galactic halo field and globular clusters. The observed properties of RRLs do not support the idea that currently existing classical dwarf spheroidal and ultra-faint dwarf galaxies are surviving representative examples of the original building blocks of the Galactic halo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا