Do you want to publish a course? Click here

Decoherence Patterns of Topological Qubits from Majorana Modes

139   0   0.0 ( 0 )
 Added by Feng-Li Lin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the decoherence patterns of topological qubits in contact with the environment by a novel way of deriving the open system dynamics other than the Feynman-Vernon. Each topological qubit is made of two Majorana modes of a 1D Kitaevs chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of the topological qubits which are weakly coupled to the fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the cases of non-topological qubits for which they always decohere completely in all Ohmic-like environments, the topological qubits decohere completely in the Ohmic and sub-Ohmic environments but not in the super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits though cannot prevent the qubit states from decoherence in the sub-Ohmic environments, can prevent from thermalization turning into Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments and the time dependence of concurrence for two topological qubits.



rate research

Read More

277 - R. Jackiw , S.-Y. Pi 2011
Zero modes arising from a planar Majorana equation in the presence of $N$ vortices require an $mathcal{N}$-dimensional state-space, where $mathcal{N} = 2^{N/2}$ for $N$ even and $mathcal{N} = 2^{(N + 1)/2}$ for $N$ odd. The mode operators form a restricted $mathcal{N}$-dimensional Clifford algebra.
We provide a current perspective on the rapidly developing field of Majorana zero modes in solid state systems. We emphasize the theoretical prediction, experimental realization, and potential use of Majorana zero modes in future information processing devices through braiding-based topological quantum computation. Well-separated Majorana zero modes should manifest non-Abelian braiding statistics suitable for unitary gate operations for topological quantum computation. Recent experimental work, following earlier theoretical predictions, has shown specific signatures consistent with the existence of Majorana modes localized at the ends of semiconductor nanowires in the presence of superconducting proximity effect. We discuss the experimental findings and their theoretical analyses, and provide a perspective on the extent to which the observations indicate the existence of anyonic Majorana zero modes in solid state systems. We also discuss fractional quantum Hall systems (the 5/2 state) in this context. We describe proposed schemes for carrying out braiding with Majorana zero modes as well as the necessary steps for implementing topological quantum computation.
160 - R. Jackiw 2011
We describe the occurrence and physical role of zero-energy modes in the Dirac equation with a topologically non-trivial background.
We propose and study a realistic model for the decoherence of topological qubits, based on Majorana fermions in one-dimensional topological superconductors. The source of decoherence is the fluctuating charge on a capacitively coupled gate, modeled by non-interacting electrons. In this context, we clarify the role of quantum fluctuations and thermal fluctuations and find that quantum fluctuations do not lead to decoherence, while thermal fluctuations do. We explicitly calculate decay times due to thermal noise and give conditions for the gap size in the topological superconductor and the gate temperature. Based on this result, we provide simple rules for gate geometries and materials optimized for reducing the negative effect of thermal charge fluctuations on the gate.
The CNOT gate is a two-qubit gate which is essential for universal quantum computation. A well-established approach to implement it within Majorana-based qubits relies on subsequent measurement of (joint) Majorana parities. We propose an alternative scheme which operates a protected CNOT gate via the holonomic control of a handful of system parameters, without requiring any measurement. We show how the adiabatic tuning of pair-wise couplings between Majoranas can robustly lead to the full entanglement of two qubits, insensitive with respect to small variations in the control of the parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا