Do you want to publish a course? Click here

Direct high-precision measurement of the magnetic moment of the proton

99   0   0.0 ( 0 )
 Added by Andreas Mooser
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin-magnetic moment of the proton $mu_p$ is a fundamental property of this particle. So far $mu_p$ has only been measured indirectly, analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin-transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the protons cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particles magnetic moment in units of the nuclear magneton $mu_p=2.792847350(9)mu_N$. This measurement outperforms previous Penning trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty year old indirect measurement, in which significant theoretical bound state corrections were required to obtain $mu_p$, by a factor of 3. By application of this method to the antiproton magnetic moment $mu_{bar{p}}$ the fractional precision of the recently reported value can be improved by a factor of at least 1000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.



rate research

Read More

112 - C. Smorra , K. Blaum , K. Franke 2014
The recent observation of single spins flips with a single proton in a Penning trap opens the way to measure the proton magnetic moment with high precision. Based on this success, which has been achieved with our apparatus at the University of Mainz, we demonstrated recently the first application of the so called double Penning-trap method with a single proton. This is a major step towards a measurement of the proton magnetic moment with ppb precision. To apply this method to a single trapped antiproton our collaboration is currently setting up a companion experiment at the antiproton decelerator of CERN. This effort is recognized as the Baryon Antibaryon Symmetry Experiment (BASE). A comparison of both magnetic moment values will provide a stringent test of CPT invariance with baryons.
We report precision measurements of the nuclear magnetic moment of textsuperscript{43}Catextsuperscript{+}, made by microwave spectroscopy of the 4s $^2$S$_{1/2}$ $left|F=4, M=0rightrangle rightarrow left|F=3, M=1rightrangle$ ground level hyperfine clock transition at a magnetic field of $approx$ 146 G, using a single laser-cooled ion in a Paul trap. We measure a clock transition frequency of $f = 3199941076.920 pm 0.046$ Hz, from which we determine $mu_I / mu_{rm{N}} = -1.315350(9)(1)$, where the uncertainty (9) arises from uncertainty in the hyperfine $A$ constant, and the (1) arises from the uncertainty in our measurement. This measurement is not corrected for diamagnetic shielding due to the bound electrons. We make a second measurement which is less precise but agrees with the first. We use our $mu_I$ value, in combination with previous NMR results, to extract the change in shielding constant of calcium ions due to solvation in D$_2$O: $Delta sigma = -0.00022(1)$.
We report an experimental measurement of a light wavelength at which the ac electric polarizability equals zero for 87Rb atoms in the F=2 ground hyperfine state. The experiment uses a condensate interferometer both to find this tune-out wavelength and to accurately determine the light polarization for it. The wavelength lies between the D1 and D2 spectral lines at 790.03235(3) nm. The measurement is sensitive to the tensor contribution to the polarizability, which has been removed so that the reported value is the zero of the scalar polarizability. The precision is fifty times better than previous tune-out wavelength measurements. Our result can be used to determine the ratio of matrix elements |<5P3/2||d||5S1/2>/<5P1/2||d||5S1/2>|^2 = 1.99219(3), a 100-fold improvement over previous experimental values. Both the tune-out wavelength and matrix element ratio are consistent with theoretical calculations, with uncertainty estimates for the theory about an order of magnitude larger than the experimental precision.
152 - S. Ulmer , A. Mooser , K. Blaum 2014
Recent exciting progress in the preparation and manipulation of the motional quantum states of a single trapped proton enabled the first direct detection of the particles spin state. Based on this success the proton magnetic moment $mu_p$ was measured with ppm precision in a Penning trap with a superimposed magnetic field inhomogeneity. An improvement by an additional factor of 1000 in precision is possible by application of the so-called double Penning trap technique. In a recent paper we reported the first demonstration of this method with a single trapped proton, which is a major step towards the first direct high-precision measurement of $mu_p$. The techniques required for the proton can be directly applied to measure the antiproton magnetic moment $mu_{bar{p}}$. An improvement in precision of $mu_{bar{p}}$ by more than three orders of magnitude becomes possible, which will provide one of the most sensitive tests of CPT invariance. To achieve this research goal we are currently setting up the Baryon Antibaryon Symmetry Experiment (BASE) at the antiproton decelerator (AD) of CERN.
The cesium 6S_1/2 scalar dipole polarizability alpha_0 has been determined from the time-of-flight of laser cooled and launched cesium atoms traveling through an electric field. We find alpha_0 = 6.611+-0.009 x 10^-39 C m^2/V= 59.42+-0.08 x 10^-24 cm^3 = 401.0+-0.6 a_0^3. The 0.14% uncertainty is a factor of fourteen improvement over the previous measurement. Values for the 6P_1/2 and 6P_3/2 lifetimes and the 6S_1/2 cesium-cesium dispersion coefficient C_6 are determined from alpha_0 using the procedure of Derevianko and Porsev [Phys. Rev. A 65, 053403 (2002)].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا