Do you want to publish a course? Click here

Herschel-ATLAS and ALMA: HATLAS J142935.3-002836, a lensed major merger at redshift 1.027

133   0   0.0 ( 0 )
 Added by Hugo Messias Dr.
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

[Abridged] Aims: This work focuses on one lensed system, HATLAS J142935.3-002836 (H1429-0028), selected in the Herschel-ATLAS field. Gathering a rich, multi-wavelength dataset, we aim to confirm the lensing hypothesis and model the background sources morphology and dynamics, as well as to provide a full physical characterisation. Methods: Multi-wavelength high-resolution data is utilised to assess the nature of the system. A lensing-analysis algorithm which simultaneously fits different wavebands is adopted to characterise the lens. The background galaxy dynamical information is studied by reconstructing the 3-D source-plane of the ALMA CO(J:4-3) transition. Near-IR imaging from HST and Keck-AO allows to constrain rest-frame optical photometry independently for the foreground and background systems. Physical parameters (such as stellar and dust masses) are estimated via modelling of the spectral energy distribution taking into account source blending, foreground obscuration, and differential magnification. Results: The system comprises a foreground edge-on disk galaxy (at z_sp=0.218) with an almost complete Einstein ring around it. The background source (at z_sp=1.027) is magnified by a factor of ~8-10 depending on wavelength. It is comprised of two components and a tens of kpc long tidal tail resembling the Antennae merger. As a whole, the system is a massive stellar system (1.32[-0.41,+0.63] x1E11 Mo) forming stars at a rate of 394+-90 Mo/yr, and has a significant gas reservoir M_ISM = 4.6+-1.7 x1E10 Mo. Its depletion time due to star formation alone is thus expected to be tau_SF=M_ISM/SFR=117+-51 Myr. The dynamical mass of one of the components is estimated to be 5.8+-1.7 x1E10 Mo, and, together with the photometric total mass estimate, it implies that H1429-0028 is a major merger system (1:2.8[-1.5,+1.8]).



rate research

Read More

Follow-up observations of (sub-)mm-selected gravitationally-lensed systems have allowed a more detailed study of the dust-enshrouded phase of star-formation up to very early cosmic times. Here, the case of the gravitationally lensed merger in HATLAS J142935.3-002836 (also known as H1429-0028; z_lens=0.218, z_bkg=1.027) is revisited following recent developments in the literature and new APEX observations targeting two carbon monoxide (CO) rotational transitions J_up=3 and 6. We show that the line-profiles comprise three distinct velocity components, where the fainter high-velocity one is less magnified and more compact. The modelling of the observed spectral line energy distribution of CO J_up=2 to 6 and [CI]3P_1-3P_0 assumes a large velocity gradient scenario, where the analysis is based on four statistical approaches. Since the detected gas and dust emission comes exclusively from only one of the two merging components (the one oriented North-South, NS), we are only able to determine upper-limits for the companion. The molecular gas in the NS component in H1429-0028 is found to have a temperature of ~70K, a volume density of log(n[/cm3])~3.7, to be expanding at ~10km/s/pc, and amounts to M_H2=4(-2,+3)*1e9 Msun. The CO to H2 conversion factor is estimated to be alpha_CO=0.4(-0.2,+0.3) Msun/(K.km/s.pc2). The NS galaxy is expected to have a factor of >10x more gas than its companion (M_H2<3e8 Msun). Nevertheless, the total amount of molecular gas in the system comprises only up to 15 per cent (1sigma upper-limit) of the total (dynamical) mass.
We present an analysis of the mass distribution inferred from strong lensing by SPT-CL J0356-5337, a cluster of galaxies at redshift z = 1.0359 revealed in the follow-up of the SPT-SZ clusters. The cluster has an Einstein radius of Erad=14 for a source at z = 3 and a mass within 500 kpc of M_500kpc = 4.0+-0.8x10^14Msol. Our spectroscopic identification of three multiply-imaged systems (z = 2.363, z = 2.364, and z = 3.048), combined with HST F606W-band imaging allows us to build a strong lensing model for this cluster with an rms of <0.3 between the predicted and measured positions of the multiple images. Our modeling reveals a two-component mass distribution in the cluster. One mass component is dominated by the brightest cluster galaxy and the other component, separated by ~170 kpc, contains a group of eight red elliptical galaxies confined in a ~9 (~70 kpc) diameter circle. We estimate the mass ratio between the two components to be between 1:1.25 and 1:1.58. In addition, spectroscopic data reveal that these two near-equal mass cores have only a small velocity difference of 300 km/s between the two components. This small radial velocity difference suggests that most of the relative velocity takes place in the plane of the sky, and implies that SPT-CL J0356-5337 is a major merger with a small impact parameter seen face-on. We also assess the relative contributions of galaxy-scale halos to the overall mass of the core of the cluster and find that within 800 kpc from the brightest cluster galaxy about 27% of the total mass can be attributed to visible and dark matter associated with galaxies, whereas only 73% of the total mass in the core comes from cluster-scale dark matter halos.
We present the results of ALMA spectroscopic follow-up of a $z=6.765$ Lyman-$alpha$ emitting galaxy behind the cluster RXJ1347-1145. We report the detection of [CII]158$mu$m line fully consistent with the Lyman-$alpha$ redshift and with the peak of the optical emission. Given the magnification of $mu=5.0 pm 0.3$ the intrinsic (corrected for lensing) luminosity of the [CII] line is $L_{[CII]} =1.4^{+0.2}_{-0.3} times 10^7L_{odot}$, which is ${sim}5$ times fainter than other detections of $zsim 7$ galaxies. The result indicates that low $L_{[CII]}$ in $zsim 7$ galaxies compared to the local counterparts might be caused by their low metallicities and/or feedback. The small velocity off-set ($Delta v = 20_{-40}^{+140} rm km/s$) between the Lyman-$alpha$ and [CII] line is unusual, and may be indicative of ionizing photons escaping.
We present initial results of very high resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of the $z$=3.042 gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These observations were carried out using a very extended configuration as part of Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at unprecedented angular resolutions as fine as 23 milliarcseconds (mas), corresponding to an un-magnified spatial scale of ~180 pc at z=3.042. The ALMA images clearly show two main gravitational arc components of an Einstein ring, with emission tracing a radius of ~1.5. We also present imaging of CO(10-9), CO(8-7), CO(5-4) and H2O line emission. The CO emission, at an angular resolution of ~170 mas, is found to broadly trace the gravitational arc structures but with differing morphologies between the CO transitions and compared to the dust continuum. Our detection of H2O line emission, using only the shortest baselines, provides the most resolved detection to date of thermal H2O emission in an extragalactic source. The ALMA continuum and spectral line fluxes are consistent with previous Plateau de Bure Interferometer and Submillimeter Array observations despite the impressive increase in angular resolution. Finally, we detect weak unresolved continuum emission from a position that is spatially coincident with the center of the lens, with a spectral index that is consistent with emission from the core of the foreground lensing galaxy.
With the advent of wide-area submillimeter surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies (DSFGs) has been revealed. Due to the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with $S_{500mu m} > 100$ mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimeter surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimetre Array (ALMA) of a sample of strongly-lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation which contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the halos formed in the EAGLE simulation and two density distributions (Singular Isothermal Sphere (SIS) and SISSA) that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of $sim$$10^{13} M_{odot}$ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by an NFW profile. We show that we would need a sample of $sim$500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا