We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kahler modulus $T$. Using this mechanism it is shown that the $Delta(54)$ non-Abelian discrete symmetry group originates from a $SU(3)$ gauge symmetry, whereas the $D_4$ symmetry group is obtained from a $SU(2)$ gauge symmetry.
We study heterotic asymmetric orbifold models. By utilizing the lattice engineering technique, we classify (22,6)-dimensional Narain lattices with right-moving non-Abelian group factors which can be starting points for Z3 asymmetric orbifold construction. We also calculate gauge symmetry breaking patterns.
Recently spatially localized anomalies have been considered in higher dimensional field theories. The question of the quantum consistency and stability of these theories needs further discussion. Here we would like to investigate what string theory might teach us about theories with localized anomalies. We consider the Z_3 orbifold of the heterotic E_8 x E_8 theory, and compute the anomaly of the gaugino in the presence of Wilson lines. We find an anomaly localized at the fixed points, which depends crucially on the local untwisted spectra at those points. We show that non-Abelian anomalies cancel locally at the fixed points for all Z_3 models with or without additional Wilson lines. At various fixed points different anomalous U(1)s may be present, but at most one at a given fixed point. It is in general not possible to construct one generator which is the sole source of the anomalous U(1)s at the various fixed points.
The three generation heterotic-string models in the free fermionic formulation are among the most realistic string vacua constructed to date, which motivated their detailed investigation. The classification of free fermion heterotic string vacua has revealed a duality under the exchange of spinor and vector representations of the SO(10) GUT symmetry over the space of models. We demonstrate the existence of the spinor-vector duality using orbifold techniques, and elaborate on the relation of these vacua to free fermionic models.
In [1] it was shown how the flavor symmetry A4 (or S4) can arise if the three fermion generations are taken to live on the fixed points of a specific 2-dimensional orbifold. The flavor symmetry is a remnant of the 6-dimensional Poincare symmetry, after it is broken down to the 4-dimensional Poincare symmetry through compactification via orbifolding. This raises the question if there are further non-abelian discrete symmetries that can arise in a similar setup. To this end, we generalize the discussion by considering all possible 2-dimensional orbifolds and the flavor symmetries that arise from them. The symmetries we obtain from these orbifolds are, in addition to S4 and A4, the groups D3, D4 and D6 simeq D3 x Z2 which are all popular groups for flavored model building.
The $Z_2times Z_2$ heterotic string orbifold gives rise to a large space of phenomenological three generation models that serves as a testing ground to explore how the Standard Model of particle physics may be incorporated in a theory of quantum gravity. Recently, we demonstrated the existence of type 0 $Z_2times Z_2$ heterotic string orbifolds in which there are no massless fermionic states. In this paper we demonstrate the existence of non--supersymmetric tachyon--free $Z_2times Z_2$ heterotic string orbifolds that do not contain any massless bosonic states from the twisted sectors. We dub these configurations type ${bar 0}$ models. They necessarily contain untwisted bosonic states, producing the gravitational, gauge and scalar moduli degrees of freedom, but possess an excess of massless fermionic states over bosonic ones, hence producing a positive cosmological constant. Such configurations may be instrumental when trying to understand the string dynamics in the early universe.