Do you want to publish a course? Click here

The role of stoichiometric vacancy periodicity in pressure-induced amorphization of the Ga2SeTe2 semiconductor alloy

146   0   0.0 ( 0 )
 Added by Najeb Abdul-Jabbar
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We observe that pressure-induced amorphization of Ga2SeTe2 (a III-VI semiconductor) is directly influenced by the periodicity of its intrinsic defect structures. Specimens with periodic and semi-periodic two-dimensional vacancy structures become amorphous around 10-11 GPa in contrast to those with aperiodic structures, which amorphize around 7-8 GPa. The result is a notable instance of altering material phase-change properties via rearrangement of stoichiometric vacancies as opposed to adjusting their concentrations. Based on our experimental findings, we posit that periodic two-dimensional vacancy structures in Ga2SeTe2 provide an energetically preferred crystal lattice that is less prone to collapse under applied pressure. This is corroborated through first-principles electronic structure calculations, which demonstrate that the energy stability of III-VI structures under hydrostatic pressure is highly dependent on the configuration of intrinsic vacancies.



rate research

Read More

It has recently been shown that amorphization and melting of ice were intimately linked. In this letter, we infer from molecular dynamics simulations on the SiO2 system that the extension of the quartz melting line in the metastable pressure-temperature domain is the pressure-induced amorphization line. It seems therefore likely that melting is the physical phenomenon responsible for pressure induced amorphization. Moreover, we show that the structure of a pressure glass is similar to that of a very rapidly (1e+13 to 1e+14 kelvins per second) quenched thermal glass.
Some results on damage build up in, and amorphization of, Si, induced by 25-30 keV Al$_5^-$, Si$_5^-$ and Cs$^-$ ions, at room temperature, are reported. We show that at low energy, amorphization is a nucleation and growth process, based on the direct impact mechanism. With an Avrami exponent $sim 1.6$, the growth towards amorphization seems to be diffusion limited. A transition to a completely amorphized state is indicated at a dose exceeding 17 eV/atom, which is higher than 6-12 eV/atom as predicted by simulations. The observed higher threshold could be due to temperature effects although an underestimation of keV-energy recoils, in simulation, may not be ruled out.
The structural phase transitions of single crystal TiO2-B nanoribbons were investigated in-situ at high-pressure using the synchrotron X-ray diffraction and the Raman scattering. Our results have shown a pressure-induced amorphization (PIA) occurred in TiO2-B nanoribbons upon compression, resulting in a high density amorphous (HDA) form related to the baddeleyite structure. Upon decompression, the HDA form transforms to a low density amorphous (LDA) form while the samples still maintain their pristine nanoribbon shape. HRTEM imaging reveals that the LDA phase has an {alpha}-PbO2 structure with short range order. We propose a homogeneous nucleation mechanism to explain the pressure-induced amorphous phase transitions in the TiO2-B nanoribbons. Our study demonstrates for the first time that PIA and polyamorphism occurred in the one-dimensional (1D) TiO2 nanomaterials and provides a new method for preparing 1D amorphous nanomaterials from crystalline nanomaterials.
We performed X-ray diffraction and electrical resistivity measurement up to pressures of 5 GPa and the first-principles calculations utilizing experimental structural parameters to investigate the pressure-induced topological phase transition in BiTeBr having a noncentrosymmetric layered structure (space group P3m1). The P3m1 structure remains stable up to pressures of 5 GPa; the ratio of lattice constants, c/a, has a minimum at pressures of 2.5 - 3 GPa. In the same range, the temperature dependence of resistivity changes from metallic to semiconducting at 3 GPa and has a plateau region between 50 and 150 K in the semiconducting state. Meanwhile, the pressure variation of band structure shows that the bulk band-gap energy closes at 2.9 GPa and re-opens at higher pressures. Furthermore, according to the Wilson loop analysis, the topological nature of electronic states in noncentrosymmetric BiTeBr at 0 and 5 GPa are explicitly revealed to be trivial and non-trivial, respectively. These results strongly suggest that pressure-induced topological phase transition in BiTeBr occurs at the pressures of 2.9 GPa.
A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond anvil cell with ab-initio calculations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure which shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic bandgap collapse observed by experiments and calculations. Additionally, a band crossing is found to occur in the low-pressure phase near 7 GPa. The pressure dependence of all the Raman-active modes is reported for both phases as well as the pressure dependence of unit-cell parameters and the equations of state. Calculations also provide information on IR-active phonons and bond distances. These findings provide insights into the effects of pressure on the physical properties of InTaO4.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا