Do you want to publish a course? Click here

Multi-Scale Structure-Aware Network for Human Pose Estimation

102   0   0.0 ( 0 )
 Added by Lipeng Ke
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We develop a robust multi-scale structure-aware neural network for human pose estimation. This method improves the recent deep conv-deconv hourglass models with four key improvements: (1) multi-scale supervision to strengthen contextual feature learning in matching body keypoints by combining feature heatmaps across scales, (2) multi-scale regression network at the end to globally optimize the structural matching of the multi-scale features, (3) structure-aware loss used in the intermediate supervision and at the regression to improve the matching of keypoints and respective neighbors to infer a higher-order matching configurations, and (4) a keypoint masking training scheme that can effectively fine-tune our network to robustly localize occluded keypoints via adjacent matches. Our method can effectively improve state-of-the-art pose estimation methods that suffer from difficulties in scale varieties, occlusions, and complex multi-person scenarios. This multi-scale supervision tightly integrates with the regression network to effectively (i) localize keypoints using the ensemble of multi-scale features, and (ii) infer global pose configuration by maximizing structural consistencies across multiple keypoints and scales. The keypoint masking training enhances these advantages to focus learning on hard occlusion samples. Our method achieves the leading position in the MPII challenge leaderboard among the state-of-the-art methods.



rate research

Read More

Human pose estimation is an important topic in computer vision with many applications including gesture and activity recognition. However, pose estimation from image is challenging due to appearance variations, occlusions, clutter background, and complex activities. To alleviate these problems, we develop a robust pose estimation method based on the recent deep conv-deconv modules with two improvements: (1) multi-scale supervision of body keypoints, and (2) a global regression to improve structural consistency of keypoints. We refine keypoint detection heatmaps using layer-wise multi-scale supervision to better capture local contexts. Pose inference via keypoint association is optimized globally using a regression network at the end. Our method can effectively disambiguate keypoint matches in close proximity including the mismatch of left-right body parts, and better infer occluded parts. Experimental results show that our method achieves competitive performance among state-of-the-art methods on the MPII and FLIC datasets.
307 - Te Qi 2019
Like many computer vision problems, human pose estimation is a challenging problem in that recognizing a body part requires not only information from local area but also from areas with large spatial distance. In order to spatially pass information, large convolutional kernels and deep layers have been normally used, introducing high computation cost and large parameter space. Luckily for pose estimation, human body is geometrically structured in images, enabling modeling of spatial dependency. In this paper, we propose a spatial shortcut network for pose estimation task, where information is easier to flow spatially. We evaluate our model with detailed analyses and present its outstanding performance with smaller structure.
Modern 3D human pose estimation techniques rely on deep networks, which require large amounts of training data. While weakly-supervised methods require less supervision, by utilizing 2D poses or multi-view imagery without annotations, they still need a sufficiently large set of samples with 3D annotations for learning to succeed. In this paper, we propose to overcome this problem by learning a geometry-aware body representation from multi-view images without annotations. To this end, we use an encoder-decoder that predicts an image from one viewpoint given an image from another viewpoint. Because this representation encodes 3D geometry, using it in a semi-supervised setting makes it easier to learn a mapping from it to 3D human pose. As evidenced by our experiments, our approach significantly outperforms fully-supervised methods given the same amount of labeled data, and improves over other semi-supervised methods while using as little as 1% of the labeled data.
Multi-frame human pose estimation in complicated situations is challenging. Although state-of-the-art human joints detectors have demonstrated remarkable results for static images, their performances come short when we apply these models to video sequences. Prevalent shortcomings include the failure to handle motion blur, video defocus, or pose occlusions, arising from the inability in capturing the temporal dependency among video frames. On the other hand, directly employing conventional recurrent neural networks incurs empirical difficulties in modeling spatial contexts, especially for dealing with pose occlusions. In this paper, we propose a novel multi-frame human pose estimation framework, leveraging abundant temporal cues between video frames to facilitate keypoint detection. Three modular components are designed in our framework. A Pose Temporal Merger encodes keypoint spatiotemporal context to generate effective searching scopes while a Pose Residual Fusion module computes weighted pose residuals in dual directions. These are then processed via our Pose Correction Network for efficient refining of pose estimations. Our method ranks No.1 in the Multi-frame Person Pose Estimation Challenge on the large-scale benchmark datasets PoseTrack2017 and PoseTrack2018. We have released our code, hoping to inspire future research.
In this work, we propose a new solution to 3D human pose estimation in videos. Instead of directly regressing the 3D joint locations, we draw inspiration from the human skeleton anatomy and decompose the task into bone direction prediction and bone length prediction, from which the 3D joint locations can be completely derived. Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time. This promotes us to develop effective techniques to utilize global information across all the frames in a video for high-accuracy bone length prediction. Moreover, for the bone direction prediction network, we propose a fully-convolutional propagating architecture with long skip connections. Essentially, it predicts the directions of different bones hierarchically without using any time-consuming memory units e.g. LSTM). A novel joint shift loss is further introduced to bridge the training of the bone length and bone direction prediction networks. Finally, we employ an implicit attention mechanism to feed the 2D keypoint visibility scores into the model as extra guidance, which significantly mitigates the depth ambiguity in many challenging poses. Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets, where comprehensive evaluation validates the effectiveness of our model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا