Do you want to publish a course? Click here

Theory of Optomechanical Interactions in Superfluid He

83   0   0.0 ( 0 )
 Added by Kenan Qu
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

A general theory is presented to describe optomechanical interactions of acoustic phonons, having extremely long lifetimes in superfluid $^4$He, with optical photons in the medium placed in a suitable electromagnetic cavity. The acoustic nonlinearity in the fluid motion is included to consider processes beyond the usual linear process involving absorption or emission of one phonon at a time. We first apply our formulation to the simplest one-phonon process involving the usual resonant anti-Stokes upconversion of an incident optical mode. However, when the allowed optical cavity modes are such that there is no single-phonon mode in the superfluid which can give rise to a resonant allowed anti-Stokes mode, we must consider the possibility of two phonon upconversion. For such a case, we show that the two step two phonon process could be dominant. We present arguments for large two step process and negligible single step two phonon contribution. The two step process also shows interesting quantum interference among different transition pathways.



rate research

Read More

We review the quantum theory of cooling of a mechanical oscillator subject to the radiation pressure force due to light circulating inside a driven optical cavity. Such optomechanical setups have been used recently in a series of experiments by various groups to cool mechanical oscillators (such as cantilevers) by factors reaching $10^{5}$, and they may soon go to the ground state of mechanical motion. We emphasize the importance of the sideband-resolved regime for ground state cooling, where the cavity ring-down rate is smaller than the mechanical frequency. Moreover, we illustrate the strong coupling regime, where the cooling rate exceeds the cavity ring-down rate and where the driven cavity resonance and the mechanical oscillation hybridize.
We develop an analytic theory of strong anisotropy of the energy spectra in the thermally-driven turbulent counterflow of superfluid He-4. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy flux and the anisotropy of the mutual friction force. We suggest an approximate analytic solution of the resulting energy-rate equation, which is fully supported by the numerical solution. The two-dimensional energy spectrum is strongly confined in the direction of the counterflow velocity. In agreement with the experiment, the energy spectra in the direction orthogonal to the counterflow exhibit two scaling ranges: a near-classical non-universal cascade-dominated range and a universal critical regime at large wavenumbers. The theory predicts the dependence of various details of the spectra and the transition to the universal critical regime on the flow parameters. This article is a part of the theme issue Scaling the turbulence edifice.
We demonstrate optomechanical interference in a multimode system, in which an optical mode couples to two mechanical modes. A phase-dependent excitation-coupling approach is developed, which enables the observation of constructive and destructive optomechanical interferences. The destructive interference prevents the coupling of the mechanical system to the optical mode, suppressing optically-induced mechanical damping. These studies establish optomechanical interference as an essential tool for controlling the interactions between light and mechanical oscillators.
In the thermally driven superfluid He-4 turbulence, the counterflow velocity $U_{rm ns}$ partially decouples the normal and superfluid turbulent velocities. Recently we suggested [J. Low Temp. Phys. 187, 497 (2017)] that this decoupling should tremendously increase the turbulent energy dissipation by mutual friction and significantly suppress the energy spectra. Comprehensive measurements of the apparent scaling exponent nexp of the 2nd-order normal fluid velocity structure function $S_2(r)propto r^{n_{rm exp}}$ in the counterflow turbulence [Phys.Rev.B 96, 094511 (2017)] confirmed our scenario of gradual dependence of the turbulence statistics on the flow parameters. We develop an analytical theory of the counterflow turbulence, accounting for a twofold mechanism of this phenomenon: i) a scale-dependent competition between the turbulent velocity coupling by the mutual friction and the $U_{rm ns}$-induced turbulent velocity decoupling and ii) the turbulent energy dissipation by the mutual friction enhanced by the velocity decoupling. The suggested theory predicts the energy spectra for a wide range of flow parameters. The mean exponents of the normal fluid energy spectra $langle m_nrangle_{10}$, found without fitting parameters, qualitatively agree with the observed $n_{rm exp} + 1$ for $Tgtrsim 1.85$K
246 - A.Freund , D.Gonzalez , X.Buelna 2018
Formation of vortex rings around moving spherical objects in superfluid He-4 at 0 K is modeled by time-dependent density functional theory. The simulations provide detailed information of the microscopic events that lead to vortex ring emission through characteristic observables such as liquid current circulation, drag force, and hydrodynamic mass. A series of simulations were performed to determine velocity thresholds for the onset of dissipation as a function of the sphere radius up to 1.8 nm and at external pressures of zero and 1 bar. The threshold was observed to decrease with the sphere radius and increase with pressure thus showing that the onset of dissipation does not involve roton emission events (Landau critical velocity), but rather vortex emission (Feynman critical velocity), which is also confirmed by the observed periodic response of the hydrodynamic observables as well as visualization of the liquid current circulation. An empirical model, which considers the ratio between the boundary layer kinetic and vortex ring formation energies, is presented for extrapolating the current results to larger length scales. The calculated critical velocity value at zero pressure for a sphere that mimics an electron bubble is in good agreement with the previous experimental observations at low temperatures. The stability of the system against symmetry breaking was linked to its ability to excite quantized Kelvin waves around the vortex rings during the vortex shedding process. At high vortex ring emission rates, the downstream dynamics showed complex vortex ring fission and reconnection events that appear similar to those seen in previous Gross-Pitaevskii theory-based calculations, and which mark the onset of turbulent behavior.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا