Do you want to publish a course? Click here

Functional single-layer graphene sheets from aromatic monolayers

166   0   0.0 ( 0 )
 Added by Andrey Turchanin
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate how self-assembled monolayers of aromatic molecules on copper substrates can be converted into high-quality single-layer graphene using low-energy electron irradiation and subsequent annealing. We characterize this two-dimensional solid state transformation on the atomic scale and study the physical and chemical properties of the formed graphene sheets by complementary microscopic and spectroscopic techniques and by electrical transport measurements. As substrates we successfully use Cu(111) single crystals and the technologically relevant polycrystalline copper foils.



rate research

Read More

216 - Xiaosong Wu , Yike Hu , Ming Ruan 2011
The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation from the Mott relation has been observed even when the carrier density is high, which reflects the importance of the screening effect. In the quantum Hall regime, the amplitude of the thermopower peaks is lower than a quantum value predicted by theories, despite the high mobility of the sample. A systematic reduction of the amplitude with decreasing temperature suggests that the suppression of the thermopower is intrinsic to Dirac electrons in graphene.
78 - J.X. Hu , J. Gou , M. Yang 2021
Disorder-induced magnetoresistance (MR) effect is quadratic at low perpendicular magnetic fields and linear at high fields. This effect is technologically appealing, especially in the two-dimensional (2D) materials such as graphene, since it offers potential applications in magnetic sensors with nanoscale spatial resolution. However, it is a great challenge to realize a graphene magnetic sensor based on this effect because of the difficulty in controlling the spatial distribution of disorder and enhancing the MR sensitivity in the single-layer regime. Here, we report a room-temperature colossal MR of up to 5,000% at 9 T in terraced single-layer graphene. By laminating single-layer graphene on a terraced substrate, such as TiO2 terminated SrTiO3, we demonstrate a universal one order of magnitude enhancement in the MR compared to conventional single-layer graphene devices. Strikingly, a colossal MR of >1,000% was also achieved in the terraced graphene even at a high carrier density of ~1012 cm-2. Systematic studies of the MR of single-layer graphene on various oxide- and non-oxide-based terraced surfaces demonstrate that the terraced structure is the dominant factor driving the MR enhancement. Our results open a new route for tailoring the physical property of 2D materials by engineering the strain through a terraced substrate.
The nanofriction of Xe monolayers deposited on graphene was explored with a quartz crystal microbalance (QCM) at temperatures between 25 and 50 K. Graphene was grown by chemical vapor deposition and transferred to the QCM electrodes with a polymer stamp. At low temperatures, the Xe monolayers are fully pinned to the graphene surface. Above 30 K, the Xe film slides and the depinning onset coverage beyond which the film starts sliding decreases with temperature. Similar measurements repeated on bare gold show an enhanced slippage of the Xe films and a decrease of the depinning temperature below 25 K. Nanofriction measurements of krypton and nitrogen confirm this scenario.This thermolubric behavior is explained in terms of a recent theory of the size dependence of static friction between adsorbed islands and crystalline substrates.
We present a detailed transmission electron microscopy and electron diffraction study of the thinnest possible membrane, a single layer of carbon atoms suspended in vacuum and attached only at its edges. Membranes consisting of two graphene layers are also reported. We find that the membranes exhibit an apparently random spontaneous curvature that is strongest in single-layer membranes. A direct visualization of the roughness is presented for two-layer membranes where we used the variation of diffracted intensities with the local orientation of the membrane.
We investigate the size scaling of the conductance of surface disordered graphene sheets of width W and length L. Metallic leads are attached to the sample ends across its width. At E ~ 0, the conductance scales with the system size as follows: i) For constant W/L, it remains constant as size is increased, at a value which depends almost lineally on that ratio; this scaling allows the definition of a conductivity value that results similar to the experimental one. ii) For fixed width, the conductance decreases exponentially with length L, both for ordered and disordered samples. Disorder reduces the exponential decay, leading to a higher conductance. iii) For constant length, conductance increases linearly with width W, a result that is exclusively due to the tails of the states of the metallic wide contact. iv) The average conductance does not show an appreciable dependence on magnetic field. Away from E = 0, the conductance shows the behavior expected in two-dimensional systems with surface disorder, i.e., ballistic transport.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا