Do you want to publish a course? Click here

Spectral signatures of dissipative standing shocks and mass outflow in presence of Comptonization around a black hole

147   0   0.0 ( 0 )
 Added by Santanu Mondal
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accretion flows having positive specific energy are known to produce outflows and winds which escape to a large distance. According to Two Component Advective Flow (TCAF) model, centrifugal pressure dominated region of the flow just outside the black hole horizon, with or without shocks, acts as the base of this outflow. Electrons from this region are depleted due to the wind and consequently, energy transfer rate due to inverse Comptonization of low energy photons are affected. Specifically, it becomes easier to cool this region and emerging spectrum is softened. Our main goal is to show spectral softening due to mass outflow in presence of Compton cooling. To achieve this, we modify Rankine-Hugoniot relationships at the shock front when post-shock region suffers mass loss due to winds and energy loss due to inverse Comptonization. We solve two-temperature equations governing an accretion flow around a black hole which include Coulomb exchange between protons and electrons and other major radiative processes such as bremsstrahlung and thermal Comptonization. We then compute emitted spectrum from this post-shock flow. We also show how location of standing shock which forms outer boundary of centrifugal barrier changes with cooling. With an increase in disc accretion rate $(dot{m_d})$, cooling is enhanced and we find that the shock moves in towards the black hole. With cooling, thermal pressure is reduced, and as a result, outflow rate is decreased. We thus directly correlate outflow rate with spectral state of the disc.

rate research

Read More

A black hole accretion may have both the Keplerian and the sub-Keplerian component. In the so-called Chakrabarti-Titarchuk scenario, the Keplerian component supplies low energy (soft) photons while the sub-Keplerian component supplies hot electrons which exchange their energy with the soft photons through Comptonization or inverse Comptonization processes. In the sub-Keplerian component, a shock is generally produced due to the centrifugal force. The postshock region is known as the CENtrifugal pressure-supported BOundary Layer (CENBOL). In this paper, we compute the effects of the thermal and the bulk motion Comptonization on the soft photons emitted from a Keplerian disk by the CENBOL, the preshock sub-Keplerian disk and the outflowing jet. We study the emerging spectrum when the converging inflow and the diverging outflow (generated from the CENBOL) are simultaneously present. From the strength of the shock, we calculate the percentage of matter being carried away by the outflow and determine how the emerging spectrum depends on the outflow rate. The preshock sub-Keplerian flow is also found to Comptonize the soft photons significantly. The interplay between the up-scattering and down-scattering effects determines the effective shape of the emerging spectrum. By simulating several cases with various inflow parameters, we conclude that whether the preshock flow, or the postshock CENBOL or the emerging jet is dominant in shaping the emerging spectrum depends strongly on the geometry of the flow and the strength of the shock in the sub-Keplerian flow.
Recent gravitational wave (GW) observations by LIGO/Virgo show evidence for hierarchical mergers, where the merging BHs are the remnants of previous BH merger events. These events may carry important clues about the astrophysical host environments of the GW sources. In this paper, we present the distributions of the effective spin parameter ($chi_mathrm{eff}$), the precession spin parameter ($chi_mathrm{p}$), and the chirp mass ($m_mathrm{chirp}$) expected in hierarchical mergers. Under a wide range of assumptions, hierarchical mergers produce (i) a monotonic increase of the average of the typical total spin for merging binaries, which we characterize with ${bar chi}_mathrm{typ}equiv overline{(chi_mathrm{eff}^2+chi_mathrm{p}^2)^{1/2}}$, up to roughly the maximum $m_mathrm{chirp}$ among first-generation (1g) BHs, and (ii) a plateau at ${bar chi}_mathrm{typ}sim 0.6$ at higher $m_mathrm{chirp}$. We suggest that the maximum mass and typical spin magnitudes for 1g BHs can be estimated from ${bar chi}_mathrm{typ}$ as a function of $m_mathrm{chirp}$. The GW data observed in LIGO/Virgo O1--O3a prefers an increase in ${bar chi}_mathrm{typ}$ at low $m_mathrm{chirp}$, which is consistent with the growth of the BH spin magnitude by hierarchical mergers, at $sim 2 sigma$ confidence. A Bayesian analysis suggests that 1g BHs have the maximum mass of $sim 15$--$30,M_odot$ if the majority of mergers are of high-generation BHs (not among 1g-1g BHs), which is consistent with mergers in active galactic nucleus disks and/or nuclear star clusters, while if mergers mainly originate from globular clusters, 1g BHs are favored to have non-zero spin magnitudes of $sim 0.3$. We also forecast that signatures for hierarchical mergers in the ${bar chi}_mathrm{typ}$ distribution can be confidently recovered once the number of GW events increases to $gtrsim O(100)$.
Mildly relativistic, oblique shocks are frequently invoked as possible sites of relativistic particle acceleration and production of strongly variable, polarized multi-wavelength emission from relativistic jet sources such as blazars, via diffusive shock acceleration (DSA). In recent work, we had self-consistently coupled DSA and radiation transfer simulations in blazar jets. These one-zone models determined that the observed spectral energy distributions (SEDs) of blazars strongly constrain the nature of the hydromagnetic turbulence responsible for pitch-angle scattering. In this paper, we expand our previous work by including full time dependence and treating two emission zones, one being the site of acceleration. This modeling is applied to a multiwavelength flare of the flat spectrum radio quasar 3C~279, fitting snap-shot SEDs and light curves. We predict spectral hysteresis patterns in various energy bands as well as cross-band time lags with optical and GeV gamma-rays as well as radio and X-rays tracing each other closely with zero time lag, but radio and X-rays lagging behind the optical and gamma-ray variability by several hours.
Fast and slow magnetosonic shock formation is presented for stationary and axisymmetric magnetohydrodynamical (MHD) accretion flows onto a black hole. The shocked black hole accretion solution must pass through magnetosonic points at some locations outside and inside the shock location. We analyze critical conditions at the magnetosonic points and the shock conditions. Then, we show the restrictions on the flow parameters for strong shocks. We also show that a very hot shocked plasma is obtained for a very high-energy inflow with small number density. Such a MHD shock can appear very close to the event horizon, and can be expected as a source of high-energy emissions. Examples of shocked MHD accretion flows are presented in the Schwarzschild case.
We simulate the star cluster, made of stars in the main sequence and different black hole (BH) remnants, around SgrA* at the center of the Milky Way galaxy. Tracking stellar evolution, we find the BH remnant masses and construct the BH mass function. We sample 4 BH species and consider the impact of the mass-function in the dynamical evolution of system. Starting from an initial 6 dimensional family of parameters and using an MCMC approach, we find the best fits to various parameters of model by directly comparing the results of the simulations after $t = 10.5$ Gyrs with current observations of the stellar surface density, stellar mass profile and the mass of SgrA*. Using these parameters, we study the dynamical evolution of system in detail. We also explore the mass-growth of SgrA* due to tidally disrupted stars and swallowed BHs. We show that the consumed mass is dominated for the BH component with larger initial normalization as given by the BH mass-function. Assuming that about 10% of the tidally disrupted stars contribute in the growth of SgrA* mass, stars make up the second dominant effect in enhancing the mass of SgrA*. We consider the detectability of the GW signal from inspiralling stellar mass BHs around SgrA* with LISA. Computing the fraction of the lifetime of every BH species in the LISA band, with signal to noise ratio $gtrsim 8$, to their entire lifetime, and rescaling this number with the total number of BHs in the system, we find that the total expected rate of inspirals per Milky-Way sized galaxy per year is $10^{-5}$. Quite interestingly, the rate is dominated for the BH component with larger initial normalization as dictated by the BH mass-function. We interpret it as the second signature of the BH mass-function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا