No Arabic abstract
A black hole accretion may have both the Keplerian and the sub-Keplerian component. In the so-called Chakrabarti-Titarchuk scenario, the Keplerian component supplies low energy (soft) photons while the sub-Keplerian component supplies hot electrons which exchange their energy with the soft photons through Comptonization or inverse Comptonization processes. In the sub-Keplerian component, a shock is generally produced due to the centrifugal force. The postshock region is known as the CENtrifugal pressure-supported BOundary Layer (CENBOL). In this paper, we compute the effects of the thermal and the bulk motion Comptonization on the soft photons emitted from a Keplerian disk by the CENBOL, the preshock sub-Keplerian disk and the outflowing jet. We study the emerging spectrum when the converging inflow and the diverging outflow (generated from the CENBOL) are simultaneously present. From the strength of the shock, we calculate the percentage of matter being carried away by the outflow and determine how the emerging spectrum depends on the outflow rate. The preshock sub-Keplerian flow is also found to Comptonize the soft photons significantly. The interplay between the up-scattering and down-scattering effects determines the effective shape of the emerging spectrum. By simulating several cases with various inflow parameters, we conclude that whether the preshock flow, or the postshock CENBOL or the emerging jet is dominant in shaping the emerging spectrum depends strongly on the geometry of the flow and the strength of the shock in the sub-Keplerian flow.
Accretion flows having positive specific energy are known to produce outflows and winds which escape to a large distance. According to Two Component Advective Flow (TCAF) model, centrifugal pressure dominated region of the flow just outside the black hole horizon, with or without shocks, acts as the base of this outflow. Electrons from this region are depleted due to the wind and consequently, energy transfer rate due to inverse Comptonization of low energy photons are affected. Specifically, it becomes easier to cool this region and emerging spectrum is softened. Our main goal is to show spectral softening due to mass outflow in presence of Compton cooling. To achieve this, we modify Rankine-Hugoniot relationships at the shock front when post-shock region suffers mass loss due to winds and energy loss due to inverse Comptonization. We solve two-temperature equations governing an accretion flow around a black hole which include Coulomb exchange between protons and electrons and other major radiative processes such as bremsstrahlung and thermal Comptonization. We then compute emitted spectrum from this post-shock flow. We also show how location of standing shock which forms outer boundary of centrifugal barrier changes with cooling. With an increase in disc accretion rate $(dot{m_d})$, cooling is enhanced and we find that the shock moves in towards the black hole. With cooling, thermal pressure is reduced, and as a result, outflow rate is decreased. We thus directly correlate outflow rate with spectral state of the disc.
We study the spectral and timing properties of a two component advective flow (TCAF) around a black hole by numerical simulation. Several cases have been simulated by varying the Keplerian disk rate and the resulting spectra and lightcurves have been produced for all the cases. The dependence of the spectral states and quasi-periodic oscillation (QPO) frequencies on the flow parameters is discussed. We also find the earlier explanation of arising of QPOs as the resonance between infall time scale and cooling time scale remain valid even for Compton cooling.
It is commonly believed that the optical/UV and X-ray emissions in luminous AGN are produced in an accretion disk and an embedded hot corona respectively. The inverse Compton scattering of disk photons by hot electrons in the corona can effectively cool the coronal gas if the mass supply is predominantly via a cool disk like flow as in BHXRBs. Thus, the application of such a model to AGNs fails to produce their observed X-ray emission. As a consequence, a fraction of disk accretion energy is usually assumed to be transferred to the corona. To avoid this assumption, we propose that gas in a vertically extended distribution is supplied to a supermassive black hole by the gravitational capture of interstellar medium or stellar wind material. In this picture, the gas partially condenses to an underlying cool disk as it flows toward the black hole, releasing accretion energy as X-ray emission and supplying mass for the disk accretion. Detailed numerical calculations reveal that the X-ray luminosity can reach a few tens of percent of the bolometric luminosity. The value of $alpha_{rm ox}$ varies from 0.9 to 1.2 for the mass supply rate ranging from 0.03 to 0.1 times the Eddington value. The corresponding photon index in the 2-10 keV energy band varies from 1.9 to 2.3. Such a picture provides a natural extension of the model for low luminosity AGN where condensation is absent at low mass accretion rates and no optically thick disk exists in the inner region.
The fully analytical solution for isothermal Bondi accretion on a black hole (MBH) at the center of two-component Jaffe (1983) galaxy models is presented. In a previous work we provided the analytical expressions for the critical accretion parameter and the radial profile of the Mach number in the case of accretion on a MBH at the center of a spherically symmetric one-component Jaffe galaxy model. Here we apply this solution to galaxy models where both the stellar and total mass density distributions are described by the Jaffe profile, with different scale-lengths and masses, and to which a central MBH is added. For such galaxy models all the relevant stellar dynamical properties can also be derived analytically (Ciotti & Ziaee Lorzad 2018). In these new models the hydrodynamical and stellar dynamical properties are linked by imposing that the gas temperature is proportional to the virial temperature of the galaxy stellar component. The formulae that are provided allow to evaluate all flow properties, and are then useful for estimates of the scale-radius and the mass flow rate when modeling accretion on massive black holes at the center of galaxies. As an application, we quantify the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the MBH, under the hypothesis of classical Bondi accretion.
Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. Recent observations of large-scale molecular outflows in ultra-luminous infrared galaxies (ULIRGs) have provided the evidence to support these studies, as they directly trace the gas out of which stars form. Theoretical models suggest an origin of these outflows as energy-conserving flows driven by fast AGN accretion disk winds. Previous claims of a connection between large-scale molecular outflows and AGN activity in ULIRGs were incomplete because they were lacking the detection of the putative inner wind. Conversely, studies of powerful AGN accretion disk winds to date have focused only on X-ray observations of local Seyferts and a few higher redshift quasars. Here we show the clear detection of a powerful AGN accretion disk wind with a mildly relativistic velocity of 0.25c in the X-ray spectrum of IRAS F11119+3257, a nearby (z = 0.189) optically classified type 1 ULIRG hosting a powerful molecular outflow. The AGN is responsible for ~80% of the emission, with a quasar-like luminosity of L_AGN = 1.5x10^46 erg/s. The energetics of these winds are consistent with the energy-conserving mechanism, which is the basis of the quasar mode feedback in AGN lacking powerful radio jets.