No Arabic abstract
The current transport and thermoelectric properties of Fe3O4 / SiO2 / p-type Si(001) heterostructures with Fe3O4 thicknesses of 150, 200, and 350 nm have been investigated between 100 and 300 K. We observe a sharp drop of the in-plane resistivity at 200K due to the onset of conduction along the Si / SiO2 interface related to tunneling of electrons from the Fe3O4 into the accumulation layer of holes at the Si / SiO2 interface, whose existence was confirmed by capacitance-voltage measurements and a two band analysis of the Hall effect. This is accompanied by a large increase of the Seebeck coefficient reaching +1000 {mu}V/K at 300K that is related to holes in the p-type Si(001) and gives a power factor of 70 mW/K2m when the Fe3O4 layer thickness is reduced down to 150 nm. We show that most of the current flows in the Fe3O4 layer at 300 K, while the Fe3O4 / SiO2 / p-type Si(001) heterostructures behave like tunneling p-n junctions in the transverse direction.
The thermoelectric and transport properties of a Fe3O4/SiO2/p-Si(100) heterostructure have been investigated between 100 and 300 K. Both Hall and Seebeck coefficients change sign from negative to positive with increasing temperature while the resistivity drops sharply due to tunneling of carriers into the p-Si(100). The low resistivity and large Seebeck coefficient of Si give a very high thermoelectric power factor of 25.5mW/K2m at 260K which is an underestimated, lower limit value and is related to the density of states and difference in the work functions of Fe3O4 and Si(100) that create an accumulation of majority holes at the p-Si/SiO2 interface
We demonstrate spin polarized tunneling from Fe through a SiO2 tunnel barrier into a Si n-i-p heterostructure. Transport measurements indicate that single step tunneling is the dominant transport mechanism. The circular polarization, Pcirc, of the electroluminescence (EL) shows that the tunneling spin polarization reflects Fe majority spin. Pcirc tracks the Fe magnetization, confirming that the spin-polarized electrons radiatively recombining in the Si originate from the Fe. A rate equation analysis provides a lower bound of 30% for the electron spin polarization in the Si at 5 K.
Using first-principles density-functional theory calculations, we predict the potential for unprecedented thermoelectric efficiency $zT=5$ at 800 K in $n$-type Ba$_{2}$BiAu full-Heusler compound. Such a high efficiency arises from an intrinsically ultralow lattice thermal conductivity coupled with a very high power factor reaching 7 mW m$^{-1}$ K$^{-2}$ at 500 K. The high power factor originates from a light, sixfold degenerate conduction band pocket along the $Gamma$-X direction. Weak acoustic phonon scattering and sixfold multiplicity combine to yield high mobility and high Seebeck coefficient. In contrast, the flat-and-dispersive (a.k.a. low-dimensional) valence band of Ba$_{2}$BiAu fail to generate a high power factor due to strong acoustic phonon scattering. The Lorenz numbers at optimal doping are smaller than the Wiedemann-Franz value, an integral feature for $zT$ enhancement as electrons are the majority heat carriers.
Modulation of the grain boundary properties in thermoelectric materials that have thermally activated electrical conductivity is crucial in order to achieve high performance at low temperatures. In this work, we show directly that the modulation of the potential barrier at the grain boundaries in perovskite SrTiO3 changes the low-temperature dependency of the bulk materials electrical conductivity. By sintering samples in a reducing environment of increasing strength, we produced La0.08Sr0.9TiO3 (LSTO) ceramics that gradually change their electrical conductivity behavior from thermally activated to single-crystal-like, with only minor variations in the Seebeck coefficient. Imaging of the surface potential by Kelvin probe force microscopy found lower potential barriers at the grain boundaries in the LSTO samples that had been processed in the more reducing environments. A theoretical model using the band offset at the grain boundary to represent the potential barrier agreed well with the measured grain boundary potential dependency of conductivity. The present work showed an order of magnitude enhancement in electrical conductivity (from 85 to 1287 S cm-1) and power factor (from 143 to 1745 {mu}W m-1 K-2) at 330 K by this modulation of charge transport at grain boundaries. This significant reduction in the impact of grain boundaries on charge transport in SrTiO3 provides an opportunity to achieve the ultimate phonon glass electron crystal by appropriate experimental design and processing.
A ternary type-I Si clathrate, K8AlxSi46-x, which is a candidate functional material composed of abundant non-toxic elements, was synthesized and its transport properties were investigated at temperatures ranging from 10 to 320 K. The synthesized compound is confirmed to be the ternary type-I Si clathrate K8Al7Si39 with a lattice parameter of a = 10.442 A using neutron powder diffractometry and inductively coupled plasma optical emission spectrometry. Electrical resistivity and Hall coefficient measurements revealed that K8Al7Si39 is a metal with electrons as the dominant carriers at a density of approximately 1x10^27 /m3. The value of Seebeck coefficient for K8Al7Si39 is negative and its absolute value increases with the temperature. The temperature dependence of the thermal conductivity is similar to that for a crystalline solid. The dimensionless figure of merit is approximately 0.01 at 300 K, which is comparable to that for other ternary Si clathrates.