Do you want to publish a course? Click here

Thermal Diffusivities of Functionalized Pentacene Semiconductors

531   0   0.0 ( 0 )
 Added by Joseph W. Brill
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured the interlayer and in-plane (needle axis) thermal diffusivities of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn). The needle axis value is comparable to the phonon thermal conductivities of quasi-one dimensional organic metals with excellent pi-orbital overlap, and its value suggests that a significant fraction of heat is carried by optical phonons. Furthermore, the interlayer (c-axis) thermal diffusivity is at least an order of magnitude larger, and this unusual anisotropy implies very strong dispersion of optical modes in the interlayer direction, presumably due to interactions between the silyl-containing side groups. Similar values for both in-plane and interlayer diffusivities have been observed for several other functionalized pentacene semiconductors with related structures.



rate research

Read More

Funtionalized pentacene, 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene), field-effect transistors(FETs) were made by thermal evaporation or solution deposition method and the mobility was measured as a function of temperature and light power. The field-effect mobility ($mu$$_{rm FET}$) has a gate-voltage dependent activation energy. A non-monotonic temperature dependence was observed at high gate voltage (V$_G$ $<$ -30 V) with activation energy E$_a$ $sim$ 60 - 170 meV,depending on the fabrication procedure. The gate-voltage dependent mobility and non-monotonic temperature dependence indicates that shallow traps play important role in the transport of TIPS-pentacene films. The current in the saturation regime as well as mobility increase upon light illumination and is proportional to the light intensity, mainly due to the photoconductive response. Transistors with submicron channel length showed unsaturating current-voltage characteristics due to the short channel effect. Realization of simple circuits such as NOT(inverter), NOR, and NAND logic gates are demonstrated for thin film TIPS-pentacene transistors.
190 - S. Haas , B. Batlogg , C. Besnard 2007
The uniaxial negative thermal expansion in pentacene crystals along $a$ is a particularity in the series of the oligoacenes, and exeptionally large for a crystalline solid. Full x-ray structure analysis from 120 K to 413 K reveals that the dominant thermal motion is a libration of the rigid molecules about their long axes, modifying the intermolecular angle which describes the herringbone packing within the layers. This herringbone angle increases with temperature (by 0.3 -- 0.6$^{circ}$ per 100 K), and causes an anisotropic rearrangement of the molecules within the layers, i.e. an expansion in the $b$ direction, and a distinct contraction along $a$. Additionally, a larger herringbone angle improves the cofacial overlap between adjacent, parallel molecules, and thus enhances the attractive van der Waals forces.
We report on heat conduction properties of thermal interface materials with self-aligning magnetic grapheme fillers. Graphene enhanced nano-composites were synthesized by an inexpensive and scalable technique based on liquid-phase exfoliation. Functionalization of graphene and few-layer-graphene flakes with Fe3O4 nanoparticles allowed us to align the fillers in an external magnetic field during dispersion of the thermal paste to the connecting surfaces. The filler alignment results in a strong increase of the apparent thermal conductivity and thermal diffusivity through the layer of nano-composite inserted between two metallic surfaces. The self-aligning magnetic grapheme fillers improve heat conduction in composites with both curing and non-curing matrix materials. The thermal conductivity enhancement with the oriented fillers is a factor of two larger than that with the random fillers even at the low ~1 wt. % of graphene loading. The real-life testing with computer chips demonstrated the temperature rise decrease by as much as 10oC with use of the non-curing thermal interface material with ~1 wt. % of the oriented fillers. Our proof-of-concept experiments suggest that the thermal interface materials with functionalized graphene and few-layer-graphene fillers, which can be oriented during the composite application to the surfaces, can lead to a new method of thermal management of advanced electronics.
The 1/f noise in pentacene thin film transistors has been measured as a function of device thickness from well above the effective conduction channel thickness to only two conducting layers. Over the entire thickness range, the spectral noise form is 1/f, and the noise parameter varies as (gate voltage)-1, confirming that the noise is due to mobility fluctuations, even in the thinnest films. Hooges parameter varies as an inverse power-law with conductivity for all film thicknesses. The magnitude and transport characteristics of the spectral noise are well explained in terms of percolative effects arising from the grain boundary structure.
185 - Nuo Yang , Gang Zhang , Baowen Li 2007
The thermal conductivity of silicon nanowires (SiNWs) is investigated by molecular dynamics (MD) simulation. It is found that the thermal conductivity of SiNWs can be reduced exponentially by isotopic defects at room temperature. The thermal conductivity reaches the minimum, which is about 27% of that of pure 28Si NW, when doped with fifty percent isotope atoms. The thermal conductivity of isotopic-superlattice structured SiNWs depends clearly on the period of superlattice. At a critical period of 1.09 nm, the thermal conductivity is only 25% of the value of pure Si NW. An anomalous enhancement of thermal conductivity is observed when the superlattice period is smaller than this critical length. The ultra-low thermal conductivity of superlattice structured SiNWs is explained with phonon spectrum theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا