Do you want to publish a course? Click here

Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires

170   0   0.0 ( 0 )
 Added by Nuo Yang
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermal conductivity of silicon nanowires (SiNWs) is investigated by molecular dynamics (MD) simulation. It is found that the thermal conductivity of SiNWs can be reduced exponentially by isotopic defects at room temperature. The thermal conductivity reaches the minimum, which is about 27% of that of pure 28Si NW, when doped with fifty percent isotope atoms. The thermal conductivity of isotopic-superlattice structured SiNWs depends clearly on the period of superlattice. At a critical period of 1.09 nm, the thermal conductivity is only 25% of the value of pure Si NW. An anomalous enhancement of thermal conductivity is observed when the superlattice period is smaller than this critical length. The ultra-low thermal conductivity of superlattice structured SiNWs is explained with phonon spectrum theory.



rate research

Read More

Porous materials provide a large surface to volume ratio, thereby providing a knob to alter fundamental properties in unprecedented ways. In thermal transport, porous nanomaterials can reduce thermal conductivity by not only enhancing phonon scattering from the boundaries of the pores and therefore decreasing the phonon mean free path, but also by reducing the phonon group velocity. Here we establish a structure-property relationship by measuring the porosity and thermal conductivity of individual electrolessly etched single crystalline silicon nanowires using a novel electron beam heating technique. Such porous silicon nanowires exhibit extremely low diffusive thermal conductivity (as low as 0.33 Wm-1K-1 at 300K for 43% porosity), even lower than that of amorphous silicon. The origin of such ultralow thermal conductivity is understood as a reduction in the phonon group velocity, experimentally verified by measuring the Young modulus, as well as the smallest structural size ever reported in crystalline Silicon (less than 5nm). Molecular dynamics simulations support the observation of a drastic reduction in thermal conductivity of silicon nanowires as a function of porosity. Such porous materials provide an intriguing platform to tune phonon transport, which can be useful in the design of functional materials towards electronics and nano-electromechanical systems.
An ultralow lattice thermal conductivity of 0.14 W$cdot$ m$^{-1} cdot$ K$^{-1}$ along the $vec b$ axis of As$_2$Se$_3$ single crystals was obtained at 300 K by first-principles calculations involving the density functional theory and the resolution of the Boltzmann transport equation. This ultralow lattice thermal conductivity arises from the combination of two mechanisms: 1) a cascade-like fall of the low-lying optical modes, which results in avoided crossings of these with the acoustic modes, low sound velocities and increased scattering rates of the acoustic phonons; and 2) the repulsion between the lone-pair electrons of the As cations and the valence $p$ orbitals of the Se anions, which leads to an increase in the anharmonicity of the bonds. The physical origins of these mechanisms lie on the nature of the chemical bonding in the material and its strong anisotropy. These results, whose validity has been addressed by comparison with SnSe, for which excellent agreement between the theoretical predictions and the experiments is achieved, point out that As$_2$Se$_3$ could exhibit improved thermoelectric properties.
From first-principles calculations, we predict that transition metal (TM) atom doped silicon nanowires have a half-metallic ground state. They are insulators for one spin-direction, but show metallic properties for the opposite spin direction. At high coverage of TM atoms, ferromagnetic silicon nanowires become metallic for both spin-directions with high magnetic moment and may have also significant spin-polarization at the Fermi level. The spin-dependent electronic properties can be engineered by changing the type of dopant TM atoms, as well as the diameter of the nanowire. Present results are not only of scientific interest, but can also initiate new research on spintronic applications of silicon nanowires.
68 - Zhang Gang , Baowen Li 2005
We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for tubes of different radius at different temperatures.
From next generation gas turbines to scavenging waste heat from car exhausts, finding new materials with ultra-low thermal conductivity ($kappa$) has the potential to lead to large gains in device efficiency. Crystal structures with inherently low $kappa$ are consequently desirable, but candidate materials are rare and often difficult to make. Using first principles calculations and inelastic neutron scattering we have studied the pyrochlore La$_2$Zr$_2$O$_7$ which has been proposed as a next generation thermal barrier. We find that there is a highly anharmonic, approximately flat, vibrational mode associated with the kagome planes. Our results suggest that this mode is responsible for the low thermal conductivity observed in the pyrochlores and that kagome compounds will be a fruitful place to search for other low $kappa$ materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا