Do you want to publish a course? Click here

A proof of the Chern-Gauss-Bonnet theorem for indefinite signature metrics using analytic continuation

136   0   0.0 ( 0 )
 Added by Peter B. Gilkey
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We derive the Chern-Gauss-Bonnet Theorem for manifolds with smooth non-degenerate boundary in the pseudo-Riemannian context from the corresponding result in the Riemannian setting by examining the Euler-Lagrange equations associated to the Pfaffian of a complex metric on the tangent space and then applying analytic continuation.



rate research

Read More

We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (R. C. Heitmann, C. Radin, J. Stat. Phys. 22, 281-287, 1980), which concerns a system of $N$ identical atoms in two dimensions interacting via the idealized pair potential $V(r)=+infty$ if $r<1$, $-1$ if $r=1$, $0$ if $r>1$. This is done by endowing the bond graph of a general particle configuration with a suitable notion of {it discrete curvature}, and appealing to a {it discrete Gauss-Bonnet theorem} (O. Knill, Elem. Math. 67, 1-17, 2012) which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann-Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard-Jones potential $V(r)=r^{-6}-2r^{-12}$, where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.
The standard model of cosmology with postulated dark energy and dark matter sources may be considered as a fairly successful fitting model to observational data. However, this model leaves the question of the physical origin of these dark components open. Fully relativistic contributions that act like dark energy on large scales and like dark matter on smaller scales can be found through generalization of the standard model by spatially averaging the inhomogeneous Universe within general relativity. The spatially averaged 3+1 Einstein equations are effective balance equations that need a closure condition. Heading for closure we here explore topological constraints. Results are straightforwardly obtained for averaged 2+1 model universes. For the relevant 3+1 case, we employ a method based on the Gauss-Bonnet-Chern theorem generalized to Lorentzian spacetimes and implement a sandwich approach to obtain spatial average properties. The 3+1 topological approach supplies us with a new equation linking evolution of scalar invariants of the expansion tensor to the norm of the Weyl tensor. From this we derive general evolution equations for averaged scalar curvature and kinematical backreaction, and we discuss related evolution equations on this level of the hierarchy of averaged equations. We also discuss the relation between topological properties of cosmological manifolds and dynamical topology change, e.g. as resulting from the formation of black holes.
It is known that the standard Schwarzschild interior metric is conformally flat and generates a constant density sphere in any spacetime dimension in Einstein and Einstein--Gauss--Bonnet gravity. This motivates the questions: In EGB does the conformal flatness criterion yield the Schwarzschild metric? Does the assumption of constant density generate the Schwarzschild interior spacetime? The answer to both questions turn out in the negative in general. In the case of the constant density sphere, a generalised Schwarzschild metric emerges. When we invoke the conformal flatness condition the Schwarschild interior solution is obtained as one solution and another metric which does not yield a constant density hypersphere in EGB theory is found. For the latter solution one of the gravitational metrics is obtained explicitly while the other is determined up to quadratures in 5 and 6 dimensions. The physical properties of these new solutions are studied with the use of numerical methods and a parameter space is located for which both models display pleasing physical behaviour.
We introduce a systematic method to produce left-invariant, non-Ricci-flat Einstein metrics of indefinite signature on nice nilpotent Lie groups. On a nice nilpotent Lie group, we give a simple algebraic characterization of non-Ricci-flat left-invariant Einstein metrics in both the class of metrics for which the nice basis is orthogonal and a more general class associated to order two permutations of the nice basis. We obtain classifications in dimension 8 and, under the assumption that the root matrix is surjective, dimension 9; moreover, we prove that Einstein nilpotent Lie groups of nonzero scalar curvature exist in every dimension $geq 8$.
We prove a Bonnet-Myers type theorem for quaternionic contact manifolds of dimension bigger than 7. If the manifold is complete with respect to the natural sub-Riemannian distance and satisfies a natural Ricci-type bound expressed in terms of derivatives up to the third order of the fundamental tensors, then the manifold is compact and we give a sharp bound on its sub-Riemannian diameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا